1,215,833 research outputs found

    Towards Coherent Neutrino Detection Using Low-Background Micropattern Gas Detectors

    Get PDF
    The detection of low energy neutrinos (<< few tens of MeV) via coherent nuclear scattering remains a holy grail of sorts in neutrino physics. This uncontroversial mode of interaction is expected to profit from a sizeable increase in cross section proportional to neutron number squared in the target nucleus, an advantageous feature in view of the small probability of interaction via all other channels in this energy region. A coherent neutrino detector would open the door to many new applications, ranging from the study of fundamental neutrino properties to true "neutrino technology". Unfortunately, present-day radiation detectors of sufficiently large mass (>> 1 kg) are not sensitive to sub-keV nuclear recoils like those expected from this channel. The advent of Micropattern Gas Detectors (MPGDs), new technologies originally intended for use in High Energy Physics, may soon put an end to this impasse. We present first tests of MPGDs fabricated with radioclean materials and discuss the approach to assessing their sensitivity to these faint signals. Applications are reviewed, in particular their use as a safeguard against illegitimate operation of nuclear reactors. A first industrial mass production of Gas Electron Multipliers (GEMs) is succinctly described.Comment: Presented at the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk VA, November 10-16. Submitted to IEEE Tran. Nucl. Sci. Five pages, eight figure

    Critical Points in the Linear Sigma Model with Quarks

    Full text link
    We employ a simple effective model to study the chiral dynamics of two flavors of quarks at finite temperature and density. In particular, we determine the phase diagram in the plane of temperature and baryon chemical potential as a function of the pion mass. An interesting phase structure occurs which results in zero, one or two critical points depending on the value of the vacuum pion mass.Comment: 16 pages plus 5 figure

    Far-field optical microscope with nanometer-scale resolution based on in-plane surface plasmon imaging

    Full text link
    A new far-field optical microscopy technique capable of reaching nanometer-scale resolution has been developed recently using the in-plane image magnification by surface plasmon polaritons. This microscopy is based on the optical properties of a metal-dielectric interface that may, in principle, provide extremely large values of the effective refractive index n up to 100-1000 as seen by the surface plasmons. Thus, the theoretical diffraction limit on resolution becomes lambda/2n, and falls into the nanometer-scale range. The experimental realization of the microscope has demonstrated the optical resolution better than 50 nm for 502 nm illumination wavelength. However, the theory of such surface plasmon-based far-field microscope presented so far gives an oversimplified picture of its operation. For example, the imaginary part of the metal dielectric constant severely limits the surface-plasmon propagation and the shortest attainable wavelength in most cases, which in turn limits the microscope magnification. Here I describe how this limitation has been overcome in the experiment, and analyze the practical limits on the surface plasmon microscope resolution. In addition, I present more experimental results, which strongly support the conclusion of extremely high spatial resolution of the surface plasmon microscope.Comment: 23 pages, 9 figures, will be published in the topical issue on Nanostructured Optical Metamaterials of the Journal of Optics A: Pure and Applied Optics, Manuscript revised in response to referees comment

    Weighted Density Functionals for Ferroelectric Materials

    Full text link
    The weighted density approximation, its implementation and its application to ferroelectric materials is discussed. Calculations are presented for several perovskite oxides and related materials. In general the weighted density approximation is found to be superior to either the local density or generalized gradient approximation for the ground state. Electronic structures are little changed. The linear response of the weighted density approximation is calculated for the homogeneous electron gas, and found to be improved relative to the local density result, but not in full agreement with existing Monte Carlo data. It is shown that the agreement can be further improved by a simple modification. Calculations of the ferroelectric soft mode in KNbO3_3 suggest that the low temperature distortion is approximately 20% smaller than indicated by existing experiments.Comment: 14 pages, 2 embedded figures, uses aipproc style. Contribution submitted to the Fifth Williamsburg Workshop on First-Principles Calculations for Ferroelectric
    • …
    corecore