5,667 research outputs found
Fast Construction of Nets in Low Dimensional Metrics, and Their Applications
We present a near linear time algorithm for constructing hierarchical nets in
finite metric spaces with constant doubling dimension. This data-structure is
then applied to obtain improved algorithms for the following problems:
Approximate nearest neighbor search, well-separated pair decomposition, compact
representation scheme, doubling measure, and computation of the (approximate)
Lipschitz constant of a function. In all cases, the running (preprocessing)
time is near-linear and the space being used is linear.Comment: 41 pages. Extensive clean-up of minor English error
Down the Rabbit Hole: Robust Proximity Search and Density Estimation in Sublinear Space
For a set of points in , and parameters and \eps, we present
a data structure that answers (1+\eps,k)-\ANN queries in logarithmic time.
Surprisingly, the space used by the data-structure is \Otilde (n /k); that
is, the space used is sublinear in the input size if is sufficiently large.
Our approach provides a novel way to summarize geometric data, such that
meaningful proximity queries on the data can be carried out using this sketch.
Using this, we provide a sublinear space data-structure that can estimate the
density of a point set under various measures, including:
\begin{inparaenum}[(i)]
\item sum of distances of closest points to the query point, and
\item sum of squared distances of closest points to the query point.
\end{inparaenum}
Our approach generalizes to other distance based estimation of densities of
similar flavor. We also study the problem of approximating some of these
quantities when using sampling. In particular, we show that a sample of size
\Otilde (n /k) is sufficient, in some restricted cases, to estimate the above
quantities. Remarkably, the sample size has only linear dependency on the
dimension
On the Complexity of Randomly Weighted Voronoi Diagrams
In this paper, we provide an bound on the expected
complexity of the randomly weighted Voronoi diagram of a set of sites in
the plane, where the sites can be either points, interior-disjoint convex sets,
or other more general objects. Here the randomness is on the weight of the
sites, not their location. This compares favorably with the worst case
complexity of these diagrams, which is quadratic. As a consequence we get an
alternative proof to that of Agarwal etal [AHKS13] of the near linear
complexity of the union of randomly expanded disjoint segments or convex sets
(with an improved bound on the latter). The technique we develop is elegant and
should be applicable to other problems
- …
