1,711 research outputs found

    Mirror dark matter will be confirmed or excluded by XENON1T

    Full text link
    Mirror dark matter, where dark matter resides in a hidden sector exactly isomorphic to the standard model, can be probed via direct detection experiments by both nuclear and electron recoils if the kinetic mixing interaction exists. In fact, the kinetic mixing interaction appears to be a prerequisite for consistent small scale structure: Mirror dark matter halos around spiral galaxies are dissipative - losing energy via dark photon emission. This ongoing energy loss requires a substantial energy input, which can be sourced from ordinary supernovae via kinetic mixing induced processes in the supernova's core. Astrophysical considerations thereby give a lower limit on the kinetic mixing strength, and indeed lower limits on both nuclear and electron recoil rates in direct detection experiments can be estimated. We show here that potentially all of the viable parameter space will be probed in forthcoming XENON experiments including LUX and XENON1T. Thus, we anticipate that these experiments will provide a definitive test of the mirror dark matter hypothesis.Comment: about 10 page

    Supernova explosions, 511 keV photons, gamma ray bursts and mirror matter

    Full text link
    There are three astroparticle physics puzzles which fire the imagination: the origin of the ``Great Positron Producer'' in the galactic bulge, the nature of the gamma-ray bursts central engine and the mechanism of supernova explosions. We show that the mirror matter model has the potential to solve all three of these puzzles in one beautifully simple strike.Comment: about 9 page

    Experimental implications of mirror matter-type dark matter

    Full text link
    Mirror matter-type dark matter is one dark matter candidate which is particularly well motivated from high energy physics. The theoretical motivation and experimental evidence are pedagogically reviewed, with emphasis on the implications of recent orthopositronium experiments, the DAMA/NaI dark matter search, anomalous meteorite events etc.Comment: about 12 pages lon

    Electric Charge Quantization

    Full text link
    Experimentally it has been known for a long time that the electric charges of the observed particles appear to be quantized. An approach to understanding electric charge quantization that can be used for gauge theories with explicit U(1)U(1) factors -- such as the standard model and its variants -- is pedagogically reviewed and discussed in this article. This approach uses the allowed invariances of the Lagrangian and their associated anomaly cancellation equations. We demonstrate that charge may be de-quantized in the three-generation standard model with massless neutrinos, because differences in family-lepton--numbers are anomaly-free. We also review the relevant experimental limits. Our approach to charge quantization suggests that the minimal standard model should be extended so that family-lepton--number differences are explicitly broken. We briefly discuss some candidate extensions (e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5

    Maximum lepton asymmetry from active-sterile neutrino oscillations in the Early Universe

    Get PDF
    A large lepton asymmetry could be generated in the Early Universe by oscillations of active to sterile neutrinos with a small mixing angle sin 2 \theta < 10^-2. The final order of magnitude of the lepton asymmetry \eta is mainly determined by its growth in the last stage of evolution when the MSW resonance dominates the kinetic equations. In this paper we present a simple way of calculating the maximum possible lepton asymmetry which can be created. Our results are in good agreement to previous calculations. Furthermore, we find that the growth of asymmetry does not obey any particular power law. We find that the maximum possible asymmetry at the freeze-out of the n/p ratio at T \sim 1 MeV strongly depends on the mass-squared difference \delta m^2: the asymmetry is negligible for \delta m^2 \ll 1 eV^2 and reaches asymptotically large values for \delta m^2 \ge 50 eV^2.Comment: 14 pp, 4 figure

    On the sign of the neutrino asymmetry induced by active-sterile neutrino oscillations in the early Universe

    Get PDF
    We deal with the problem of the final sign of the neutrino asymmetry generated by active-sterile neutrino oscillations in the Early Universe solving the full momentum dependent quantum kinetic equations. We study the parameter region 102<δm2/eV210310^{-2} \stackrel{<}{\sim} |\delta m^2|/eV^2\le 10^3. For a large range of sin22θ0\sin^2 2\theta_0 values the sign of the neutrino asymmetry is fixed and does not oscillate. For values of mixing parameters in the region 106<sin22θ0<3×104(eV2/δm2)10^{-6}\stackrel{<}{\sim}\sin^{2}2\theta_{0}\stackrel{<}{\sim} 3\times 10^{-4} ({\rm eV}^{2}/|\delta m^{2}|), the neutrino asymmetry appears to undergo rapid oscillations during the period where the exponential growth occurs. Our numerical results indicate that the oscillations are able to change the neutrino asymmetry sign. The sensitivity of the solutions and in particular of the final sign of lepton number to small changes in the initial conditions depends whether the number of oscillations is high enough. It is however not possible to conclude whether this effect is induced by the presence of a numerical error or is an intrinsic feature. As the amplitude of the statistical fluctuations is much lower than the numerical error, our numerical analysis cannot demonstrate the possibility of a chaotical generation of lepton domains. In any case this possibility is confined to a special region in the space of mixing parameters and it cannot spoil the compatibility of the νμνs\nu_{\mu}\leftrightarrow\nu_{s} solution to the neutrino atmospheric data obtained assuming a small mixing of the νs\nu_{s} with an eVτ{\rm eV}-\tau neutrino.Comment: Typo's corrected, accepted for publication in Phys.Rev.

    Quark-lepton symmetric model at the LHC

    Full text link
    We investigate the quark-lepton symmetric model of Foot and Lew in the context of the Large Hadron Collider (LHC). In this `bottom-up' extension to the Standard Model, quark-lepton symmetry is achieved by introducing a gauged `leptonic colour' symmetry which is spontaneously broken above the electroweak scale. If this breaking occurs at the TeV scale, then we expect new physics to be discovered at the LHC. We examine three areas of interest: the Z' heavy neutral gauge boson, charge ±1/2\pm1/2 exotic leptons, and a colour triplet scalar diquark. We find that the LHC has already explored and/or will explore new parameter space for these particles over the course of its lifetime.Comment: 24 pages, 6 figure

    Phenomenology of a very light scalar (100 MeV <mh<<m_h< 10 GeV) mixing with the SM Higgs

    Get PDF
    In this paper we investigate the phenomenology of a very light scalar, hh, with mass 100 MeV <mh<<m_h< 10 GeV, mixing with the SM Higgs. As a benchmark model we take the real singlet scalar extension of the SM. We point out apparently unresolved uncertainties in the branching ratios and lifetime of hh in a crucial region of parameter space for LHC phenomenology. Bounds from LEP, meson decays and fixed target experiments are reviewed. We also examine prospects at the LHC. For mhmBm_h \lesssim m_B the dominant production mechanism is via meson decay; our main result is the calculation of the differential pTp_T spectrum of hh scalars originating from B mesons and the subsequent prediction of up to thousands of moderate (triggerable) pTp_T displaced dimuons possibly hiding in the existing dataset at ATLAS/CMS or at LHCb. We also demonstrate that the subdominant VhVh production channel has the best sensitivity for mhmBm_h \gtrsim m_B and that future bounds in this region could conceivably compete with those of LEP.Comment: 13 pages, 9 figure
    corecore