3,308 research outputs found

    Compressed Encoding for Rank Modulation

    Get PDF
    Rank modulation has been recently proposed as a scheme for storing information in flash memories. While rank modulation has advantages in improving write speed and endurance, the current encoding approach is based on the "push to the top" operation that is not efficient in the general case. We propose a new encoding procedure where a cell level is raised to be higher than the minimal necessary subset -instead of all - of the other cell levels. This new procedure leads to a significantly more compressed (lower charge levels) encoding. We derive an upper bound for a family of codes that utilize the proposed encoding procedure, and consider code constructions that achieve that bound for several special cases

    Trade-offs between Instantaneous and Total Capacity in Multi-Cell Flash Memories

    Get PDF
    The limited endurance of flash memories is a major design concern for enterprise storage systems. We propose a method to increase it by using relative (as opposed to fixed) cell levels and by representing the information with Write Asymmetric Memory (WAM) codes. Overall, our new method enables faster writes, improved reliability as well as improved endurance by allowing multiple writes between block erasures. We study the capacity of the new WAM codes with relative levels, where the information is represented by multiset permutations induced by the charge levels, and show that it achieves the capacity of any other WAM codes with the same number of writes. Specifically, we prove that it has the potential to double the total capacity of the memory. Since capacity can be achieved only with cells that have a large number of levels, we propose a new architecture that consists of multi-cells - each an aggregation of a number of floating gate transistors

    The unique chemical reactivity of a graphene nanoribbon's zigzag edge

    Get PDF
    The zigzag edge of a graphene nanoribbon possesses a unique electronic state that is near the Fermi level and localized at the edge carbon atoms. We investigate the chemical reactivity of these zigzag edge sites by examining their reaction energetics with common radicals from first principles. A "partial radical" concept for the edge carbon atoms is introduced to characterize their chemical reactivity, and the validity of this concept is verified by comparing the dissociation energies of edge-radical bonds with similar bonds in molecules. In addition, the uniqueness of the zigzag-edged graphene nanoribbon is further demonstrated by comparing it with other forms of sp2 carbons, including a graphene sheet, nanotubes, and an armchair-edged graphene nanoribbon.Comment: 24 pages, 9 figure

    Electronic Ground State of Higher Acenes

    Full text link
    We examine the electronic ground state of acenes with different number of fused benzene rings (up to 40) by using first principles density functional theory. Their properties are compared with those of infinite polyacene. We find that the ground state of acenes that consist of more than seven fused benzene rings is an antiferromagnetic (in other words, open-shell singlet) state, and we show that this singlet is not necessarily a diradical, because the spatially separated magnetizations for the spin-up and spin-down electrons increase with the size of the acene. For example, our results indicate that there are about four spin-up electrons localized at one zigzag edge of 20-acene. The reason that both acenes and polyacene have the antiferromagnetic ground state is due to the zigzag-shaped boundaries, which cause pi-electrons to localize and form spin orders at the edges. Both wider graphene ribbons and large rectangular-shaped polycyclic aromatic hydrocarbons have been shown to share this antiferromagnetic ground state. Therefore, we demonstrate that the pi-electronic structure of higher acenes and ployacene are still dictated by the zigzag edges, and our results provide a consistent description of their electronic ground state.Comment: revised: corrected some errors, rephrased some discussions, and added a reference (Ref. 29); 19 pages, 6 figure
    corecore