35 research outputs found

    ) Maceil, C. E.; In The Encyclopedia of Nuclear Magnetic Resonance

    Get PDF
    Evanescent-wave cavity ring-down spectroscopy has been applied to a planar fused-silica surface covered with crystal violet (CV + ) cations to characterize the silanol groups indirectly. A radiation-polarization dependence of the adsorption isotherm of CV + at the CH 3 CN/silica interface is measured and fit to a two-site Langmuir equation to determine the relative populations of two different types of isolated silanol groups. CV + binding at type I sites yields a free energy of adsorption of -29.9 ( 0.2 kJ/mol and a saturation surface density of (7.4 ( 0.5) × 10 12 cm -2 , whereas the values of -17.9 ( 0.4 kJ/mol and (3.1 ( 0.4) × 10 13 cm -2 are obtained for the type II sites. The CV + cations, each with a planar area of ∼120 Å 2 , seem to be aligned randomly while lying over the SiOtype I sites, thereby suggesting that this type of site may be surrounded by a large empty surface area (>480 Å 2 ). In contrast, the CV + cations on a type II sites are restricted with an average angle of ∼40°tilted off the surface normal, suggesting that the CV + cations on these sites are grouped closely together. The average tilt angle increases with increasing concentration of crystal violet so that CV + cations may be separated from each other to minimize the repulsion of nearby CV + and SiOH sites. Adsorption behavior of organic molecules on silica surfaces has been the major theme of interface studies for improving the efficiency of chromatographic separations. When cationic molecules are involved, the strong electrostatic interaction with the negatively charged silanol (SiOH) groups on the surface of the stationary-phase silica may cause unwanted peak broadening and tailing, mainly from a slow kinetic response of the electrostatic adsorption. [1][2][3][4][5][6] The surface charge density is one of the primary factors influencing the strength of electrostatics. Accordingly, insight into how the cationic molecules interact with the local silanol groups of the silica surface should aid in the improvement of the design of surface modifications. Silanol groups play the main role in influencing the interfacial adsorption behavior, possessing an average surface density of ∼4.9 × 10 14 cm -2 on the silica surface 7-9 or an average surface area of 20.4 Å 2 per silanol group. As compared to silica sol particles, which have higher surface areas of (0.1-5) × 10 22 Å 2 /g, 7-9 only a few studies focus on characterization of silanol groups on a planar silica surface. 10-12 Ong et al. 10 first reported that isolated and vicinal silanol groups both exist at the water/silica interface possessing different pK a values of 4.9 and 8.5, with corresponding surface populations of 19 and 81%, respectively. These results were confirmed by means of cross-polarization magic angle spinning NMR 13 and fluorescence microscopy. 14 The isolated silanol groups with pK a ) 4.9 are anticipated to be separated far from each other (>5.5 Å), permitting proton dissociation. The vicinal silanol groups are located so closely as to form hydrogen bonds directly with their neighbors (<3.3 Å), which share 46% of the surface population, or through a water-molecule bridge (3.5-5.5 Å), which covers ∼35% of the surface population. 12,[15][16][17] By using second harmonic generation (SHG) with a cationic crystal violet (CV + ) molecular probe to investigate the local density distribution of the isolated silanols (pK a ) 4.9) on the planar fusedsilica surface, Xu and co-workers 12 classified them into two types. The first type of silanol group is anticipated to be surrounded by a large empty surface area (g120 Å 2 ) with a surface density o

    ARTHUR H. THOMAS COMPANY

    No full text

    Book reviews - Advances in chromatography

    No full text

    Book reviews - Chromatography in geology

    No full text
    corecore