20,584 research outputs found

    Lorentz-violating nonminimal coupling contributions in mesonic hydrogen atoms and generation of photon higher-order derivative terms

    Full text link
    We have studied the contributions of Lorentz-violating CPT-odd and CPT-even nonminimal couplings to the energy spectrum of the mesonic hydrogen and the higher-order radiative corrections to the effective action of the photon sector of a Lorentz-violating version of the scalar electrodynamics. By considering the complex scalar field describes charged mesons (pion or kaon), the non-relativistic limit of the model allows to attain upper-bounds by analyzing its contribution to the mesonic hydrogen energy. By using the experimental data for the 1S1S strong correction shift and the pure QED transitions 4P→3P4P \rightarrow 3P, the best upper-bound for the CPT-odd coupling is <10−12eV−1<10^{-12}\text{eV}^{-1} and for the CPT-even one is <10−16eV−2<10^{-16}\text{eV}^{-2}. Besides, the CPT-odd radiative correction to the photon action is a dimension-5 operator which looks like a higher-order Carroll-Field-Jackiw term. The CPT-even radiative contribution to the photon effective action is a dimension-6 operator which would be a higher-order derivative version of the minimal CPT-even term of the standard model extension

    Coupling vortex dynamics with collective excitations in Bose-Einstein Condensates

    Full text link
    Here we analyze the collective excitations as well as the expansion of a trapped Bose-Einstein condensate with a vortex line at its center. To this end, we propose a variational method where the variational parameters have to be carefully chosen in order to produce reliable results. Our variational calculations agree with numerical simulations of the Gross-Pitaevskii equation. The system considered here turns out to exhibit four collective modes of which only three can be observed at a time depending of the trap anisotropy. We also demonstrate that these collective modes can be excited using well established experimental methods such as modulation of the s-wave scattering length

    Gaussian quantum Monte Carlo methods for fermions

    Get PDF
    We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application, we calculate finite-temperature properties of the two dimensional Hubbard model.Comment: 4 pages, 3 figures, Revised version has expanded discussion, simplified mathematical presentation, and application to 2D Hubbard mode

    Superconducting Kondo phase in an orbitally-separated bilayer

    Full text link
    The nature of superconductivity in heavy-fermion materials is a subject under intense debate, and controlling this many-body state is central for its eventual understanding. Here, we examine how proximity effects may change this phenomenon, by investigating the effects of an additional metallic layer on the top of a Kondo-lattice, and allowing for pairing in the former. We analyze a bilayer Kondo Lattice Model with an on-site Hubbard interaction, −U-U, on the additional layer, using a mean-field approach. For U=0U=0, we notice a drastic change in the density-of-states due to multiple-orbital singlet resonating combinations. It destroys the well-known Kondo insulator at half filling, leading to a metallic ground state, which, in turn, enhances antiferromagnetism through the polarization of the conduction electrons. For U≠0U\neq 0, a superconducting Kondo state sets in at zero temperature, with the occurrence of unconventional pairing amplitudes involving ff-electrons. We establish that this remarkable feature is only possible due to the proximity effects of the additional layer. At finite temperatures we find that the critical superconducting temperature, TcT_c, decreases with the interlayer hybridization. We have also established that a zero temperature superconducting amplitude tracks TcT_c, which reminisces the BCS proportionality between the superconducting gap and TcT_c.Comment: 11 pages, 10 figure

    Effects of a CPT-even and Lorentz-violating nonminimal coupling on the electron-positron scattering

    Get PDF
    We propose a new \emph{CPT}-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (KF)μναβ(K_{F})_{\mu\nu\alpha\beta} of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e++e−→μ++μ−e^{+}+e^{-}\rightarrow\mu^{+}+\mu^{-}. Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (KF)μναβ(K_{F})_{\mu\nu\alpha\beta} tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 10−12(eV)−110^{-12}(eV)^{-1} on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled.Comment: LaTeX2e, 06 pages, 01 figure

    Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    Full text link
    In this letter we show for the first time that the usual CPT-even gauge term of the standard model extension (SME) can be radiatively generated, in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor (KF)(K_{F}) can be used improve the bounds on the magnitude of the nonminimal coupling, λ(KF),\lambda(K_{F}), by the factors 10510^{5} or 1025.10^{25}. The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.Comment: Revtex style, two columns, 6 pages, revised final version to be published in the Physics Letters B (2013
    • …
    corecore