4,210 research outputs found

    Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics

    Full text link
    The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.Comment: 5 pages, 3 figure

    The old anticentre open cluster Berkeley 32: membership and fundamental parameters

    Full text link
    We have obtained medium-low resolution spectroscopy and BVI CCD imaging of Berkeley 32, an old open cluster which lies in the anticentre direction. From the radial velocities of 48 stars in the cluster direction we found that 31 of them, in crucial evolutionary phases, are probable cluster members, with an average radial velocity of +106.7 (sigma = 8.5) km/s. From isochrone fitting to the colour magnitude diagrams of Berkeley 32 we have obtained an age of 6.3 Gyr, (m-M)0 = 12.48 and E(B-V) = 0.10. The best fit is obtained with Z=0.008. A consistent distance, (m-M)0 ~= 12.6 +/- 0.1, has been derived from the mean magnitude of red clump stars with confirmed membership; we may assume (m-M)0 ~= 12.55 +/- 0.1. The colour magnitude diagram of the nearby field observed to check for field stars contamination looks intriguingly similar to that of the Canis Major overdensity.Comment: MNRAS, in press. Degraded resolution for Fig.

    Optical pulsations from a transitional millisecond pulsar

    Get PDF
    Weakly magnetic, millisecond spinning neutron stars attain their very fast rotation through a 1E8-1E9 yr long phase during which they undergo disk-accretion of matter from a low mass companion star. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is still strong enough to channel the accreting matter towards the magnetic poles. When mass transfer is much reduced or ceases altogether, pulsed emission generated by particle acceleration in the magnetosphere and powered by the rotation of the neutron star is observed, preferentially in the radio and gamma-ray bands. A few transitional millisecond pulsars that swing between an accretion-powered X-ray pulsar regime and a rotationally-powered radio pulsar regime in response to variations of the mass in-flow rate have been recently identified. Here we report the detection of optical pulsations from a transitional pulsar, the first ever from a millisecond spinning neutron star. The pulsations were observed when the pulsar was surrounded by an accretion disk and originated inside the magnetosphere or within a few hundreds of kilometres from it. Energy arguments rule out reprocessing of accretion-powered X-ray emission and argue against a process related to accretion onto the pulsar polar caps; synchrotron emission of electrons in a rotation-powered pulsar magnetosphere seems more likely.Comment: 32 pages, 7 figures. The first two authors contributed equally to this wor

    The influence of a new clinical motion for endodontic instruments on the incidence of postoperative pain

    Get PDF
    Previous studies showed that motor motions play an important role in determining apical extrusion of debris. Therefore a new clinical motion (MIMERACI) has been proposed. The basic idea is to progress slowly (1mm advancement), and after each 1mm, to remove the instrument from the canal, clean flutes and irrigate. The aim of the study was to prove whether the clinical use of MIMERACI technique would influence or not postoperative pain.MATERIALS AND METHODS: 100 teeth requesting endodontic treatment were selected for the study and divided into two similar groups based on anatomy, pre-operative symptoms and vitality, presence or absence of periapical lesion. All teeth were shaped, cleaned and obturated by the same operator, using the same NiTi instruments. The only difference between the two groups was the instrumentation technique: tradional (group A) vs MIMERACI (group B). Assessment of postoperative pain was performed 3 days after treatment. Presence, absence and degree of pain were recorded with a visual analogue scale (VAS), validated in previous studies. Collected data statistically analyzed using one-way ANOVA post hoc Tukey test. RESULTS: For VAS pain scores MIMERACI technique showed significantly better results than group A (p=0,031). Overall, both incidence and intensity of symptoms were significantly lower. Flare ups occurred in 3 patients, but none treated with the MIMERACI Technique. CONCLUSIONS: Since extruded debris can elicit more postoperative pain, results obtained by using MIMERACI technique are probably due to many factors: better mechanical removal and less production of debris and more efficient irrigation during instrumentation

    Near Infrared Spectroscopy of High Redshift Active Galactic Nuclei. II. Disappearing Narrow Line Regions and the Role of Accretion

    Full text link
    We present new near infrared spectroscopic measurements for 29 luminous high-z quasars and use the data to discuss the size and other properties of the NLRs in those sources. The high resolution spectra have been used to carefully model the Fe II blends and to provide reliable [O III], Fe II and Hb measurements. We find that about 2/3 of all high luminosity sources show strong [O III] lines while the remaining objects show no or very weak such line. While weak [O III] emitters are also found among lower luminosity AGN, we argue that the implications for very high luminosity objects are different. In particular, we suggest that the averaging of these two populations in other works gave rise to claims of a Baldwin relationship in [O III] which is not confirmed by our data. We also argue that earlier proposed relations of the type R_NLR \propto L_[O III]^{1/2}, where R_NLR is the NLR radius, are theoretically sound yet they must break down for R_NLR exceeding a few kpc. This suggests that the NLR properties in luminous sources are different from those observed in nearby AGN. In particular, we suggest that some sources lost their very large, dynamically unbound NLR while others are in a phase of violent star-forming events that produce a large quantity of high density gas in the central kpc. This gas is ionized and excited by the central radiation source and its spectroscopic properties may be different from those observed in nearby, lower luminosity NLRs. We also discuss the dependence of EW(Hb) and Fe II/Hb on L, M_BH, and accretion rate for a large sample of AGNs. The strongest dependence of the two quantities is on the accretion rate and the Fe II/Hb correlation is probably due to the EW(Hb) dependence on accretion rate. We show the most extreme values measured so far of Fe II/Hb and address its correlation with EW([O III]).Comment: 10 pages (emulateapj), 9 figures. Accepted by Ap
    • …
    corecore