6 research outputs found
System and method for cardiorespiratory sleep stage classification
The present disclosure pertains to a system configured to determine one or more parameters based on cardiorespiratory information from a subject and determine sleep stage classifications based on a discriminative undirected probabilistic graphical model such as Conditional Random Fields using the determined parameters. The system is advantageous because sleep is a structured process in which parameters determined for individual epochs are not independent over time and the system determines the sleep stage classifications based on parameters determined for a current epoch, determined relationships between parameters, sleep stage classifications determined for previous epochs, and/or other information. The system does not assume that determined parameters are discriminative during an entire sleep stage, but maybe indicative of a sleep stage transition alone. In some embodiments, the system comprises one or more sensors, one or more physical computer processors, electronic storage, and a user interface
Multi-night home assessment of sleep structure in OSA with and without insomnia
OBJECTIVE: To explore sleep structure in participants with obstructive sleep apnea (OSA) and comorbid insomnia (COMISA) and participants with OSA without insomnia (OSA-only) using both single-night polysomnography and multi-night wrist-worn photoplethysmography/accelerometry.METHODS: Multi-night 4-class sleep-staging was performed with a validated algorithm based on actigraphy and heart rate variability, in 67 COMISA (23 women, median age: 51 years) and 50 OSA-only (15 women, median age: 51) participants. Sleep statistics were compared using linear regression models and mixed-effects models. Multi-night variability was explored using a clustering approach and between- and within-participant analysis.RESULTS: Polysomnographic parameters showed no significant group differences. Multi-night measurements, during 13.4 ± 5.2 nights per subject, demonstrated a longer sleep onset latency and lower sleep efficiency for the COMISA group. Detailed analysis of wake parameters revealed longer mean durations of awakenings in COMISA, as well as higher numbers of awakenings lasting 5 min and longer (WKN ≥5min) and longer wake after sleep onset containing only awakenings of 5 min or longer. Within-participant variance was significantly larger in COMISA for sleep onset latency, sleep efficiency, mean duration of awakenings and WKN ≥5min. Unsupervised clustering uncovered three clusters; participants with consistently high values for at least one of the wake parameters, participants with consistently low values, and participants displaying higher variability. CONCLUSION: Patients with COMISA more often showed extended, and more variable periods of wakefulness. These observations were not discernible using single night polysomnography, highlighting the relevance of multi-night measurements to assess characteristics indicative for insomnia.</p
System and method for cardiorespiratory sleep stage classification
The present disclosure pertains to a system configured to determine one or more parameters based on cardiorespiratory information from a subject and determine sleep stage classifications based on a discriminative undirected probabilistic graphical model such as Conditional Random Fields using the determined parameters. The system is advantageous because sleep is a structured process in which parameters determined for individual epochs are not independent over time and the system determines the sleep stage classifications based on parameters determined for a current epoch, determined relationships between parameters, sleep stage classifications determined for previous epochs, and/or other information. The system does not assume that determined parameters are discriminative during an entire sleep stage, but maybe indicative of a sleep stage transition alone. In some embodiments, the system comprises one or more sensors, one or more physical computer processors, electronic storage, and a user interface
A comparison of methods for clustering longitudinal data with slowly changing trends
Longitudinal clustering provides a detailed yet comprehensible description of time profiles among subjects. With several approaches that are commonly used for this purpose, it remains unclear under which conditions a method is preferred over another method. We investigated the performance of five methods using Monte Carlo simulations on synthetic datasets, representing various scenarios involving polynomial time profiles. The performance was evaluated on two aspects: The agreement of the group assignment to the simulated reference, as measured by the split-join distance, and the trend estimation error, as measured by a weighted minimum of the mean squared error (WMMSE). Growth mixture modeling (GMM) was found to achieve the best overall performance, followed closely by a two-step approach using growth curve modeling and k-means (GCKM). Considering the model similarities between GMM and GCKM, the latter is preferred for large datasets for its computational efficiency. Longitudinal k-means (KML) and group-based trajectory modeling were found to have practically identical solutions in the case that the group trajectory model of the latter method is correctly specified. Both methods performed less than GMM and GCKM in most settings