584 research outputs found
NlpI-Prc Proteolytic Complex Mediates Peptidoglycan Synthesis and Degradation via Regulation of Hydrolases and Synthases in <i>Escherichia coli</i>
Balancing peptidoglycan (PG) synthesis and degradation with precision is essential for bacterial growth, yet our comprehension of this intricate process remains limited. The NlpI-Prc proteolytic complex plays a crucial but poorly understood role in the regulation of multiple enzymes involved in PG metabolism. In this paper, through fluorescent D-amino acid 7-hydroxycoumarincarbonylamino-D-alanine (HADA) labeling and immunolabeling assays, we have demonstrated that the NlpI-Prc complex regulates the activity of PG transpeptidases and subcellular localization of PBP3 under certain growth conditions. PBP7 (a PG hydrolase) and MltD (a lytic transglycosylase) were confirmed to be negatively regulated by the NlpI-Prc complex by an in vivo degradation assay. The endopeptidases, MepS, MepM, and MepH, have consistently been demonstrated as redundantly essential “space makers” for nascent PG insertion. However, we observed that the absence of NlpI-Prc complex can alleviate the lethality of the mepS mepM mepH mutant. A function of PG lytic transglycosylases MltA and MltD as “space makers” was proposed through multiple gene deletions. These findings unveil novel roles for NlpI-Prc in the regulation of both PG synthesis and degradation, shedding light on the previously undiscovered function of lytic transglycosylases as “space makers” in PG expansion
An Updated Model of the Divisome: Regulation of the Septal Peptidoglycan Synthesis Machinery by the Divisome
The synthesis of a peptidoglycan septum is a fundamental part of bacterial fission and is driven by a multiprotein dynamic complex called the divisome. FtsW and FtsI are essential proteins that synthesize the peptidoglycan septum and are controlled by the regulatory FtsBLQ subcomplex and the activator FtsN. However, their mode of regulation has not yet been uncovered in detail. Understanding this process in detail may enable the development of new compounds to combat the rise in antibiotic resistance. In this review, recent data on the regulation of septal peptidoglycan synthesis is summarized and discussed. Based on structural models and the collected data, multiple putative interactions within FtsWI and with regulators are uncovered. This elaborates on and supports an earlier proposed model that describes active and inactive conformations of the septal peptidoglycan synthesis complex that are stabilized by these interactions. Furthermore, a new model on the spatial organization of the newly synthesized peptidoglycan and the synthesis complex is presented. Overall, the updated model proposes a balance between several allosteric interactions that determine the state of septal peptidoglycan synthesis
Absence of long-range diffusion of OmpA in E. coli is not caused by its peptidoglycan binding domain.
BACKGROUND: It is widely believed that integral outer membrane (OM) proteins in bacteria are able to diffuse laterally in the OM. However, stable, immobile proteins have been identified in the OM of Escherichia coli. In explaining the observations, a hypothesized interaction of the immobilized OM proteins with the underlying peptidoglycan (PG) cell wall played a prominent role. RESULTS: OmpA is an abundant outer membrane protein in E. coli containing a PG-binding domain. We use FRAP to investigate whether OmpA is able to diffuse laterally over long-range (> ~100Â nm) distances in the OM. First, we show that OmpA, containing a PG binding domain, does not exhibit long-range lateral diffusion in the OM. Then, to test whether PG interaction was required for this immobilization, we genetically removed the PG binding domain and repeated the FRAP experiment. To our surprise, this did not increase the mobility of the protein in the OM. CONCLUSIONS: OmpA exhibits an absence of long-range (> ~100Â nm) diffusion in the OM that is not caused by its PG binding domain. Therefore, other mechanisms are needed to explain this observation, such as the presence of physical barriers in the OM, or strong interactions with other elements in the cell envelope
The <i>Escherichia coli</i> outer membrane β-barrel assembly machinery (Bam) crosstalks with the divisome
The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane
- …