239 research outputs found

    Structural-Damage Detection by Distributed Piezoelectric Transducers and Tuned Electric Circuits

    Full text link
    A novel technique for damage detection of structures is introduced and discussed. It is based on purely electric measurements of the state variables of an electric network coupled to the main structure through a distributed set of piezoelectric patches. The constitutive parameters of this auxiliary network are optimized to increase the sensitivity of global measurements- as the frequency, response functions relative to selected electric degrees of freedom-with respect to a given class of variations in the structural-mechanical properties. Because the proposed method is based on purely electric input and output measurements, it allows for accurate results in the identification and localization of damages. Use of the electric frequency-response function to identify the mechanical damage leads to nonconvex optimization problems; therefore the proposed sensitivity-enhanced identification procedure becomes computationally efficient if an a priori knowledge about the damage is available.Comment: 18 page

    Optimal piezo-electro-mechanical coupling to control plate vibrations

    Full text link
    A new way of coupling electrical and mechanical waves, using piezoelectric effect, is presented here. Since the energy exchange between two systems supporting wave propagation is maximum when their evolution is governed by similar equations, hence, an optimal electromechanical coupling is obtained by designing an electric network which is "analog" to the mechanical structure to be controlled. In this paper, we exploit this idea to enhance the coupling, between a Kirchhoff-Love plate and one possible synthesis of its circuital analog, as obtained by means of a set of piezoelectric actuators uniformly distributed upon the plate. It is shown how this approach allows for an optimal energy exchange between the mechanic and the electric forms independent of the modal evolution of the structure. Moreover, we show how an efficient electric dissipation of the mechanical energy can be obtained adding dissipative elements in the electric network.Comment: 9 page

    Synthesis of electrical networks interconnecting PZT actuators to damp mechanical vibrations

    Full text link
    This paper proves that it is possible to damp mechanical vibrations of some beam frames by means of piezoelectric actuators interconnected via passive networks. We create a kind of electromechanical wave guide where the electrical velocity group equals the mechanical one thus enabling an electromechanical energy transfer. Numerical simulations are presented which prove the technical feasibility of proposed deviceComment: International Symposium on Applied Electromagnetics and Mechanics in honor of Professor K.Miya, Tokyo: 2000. 9 page

    Analytical continuum mechanics \`a la Hamilton-Piola: least action principle for second gradient continua and capillary fluids

    Full text link
    In this paper a stationary action principle is proven to hold for capillary fluids, i.e. fluids for which the deformation energy has the form suggested, starting from molecular arguments, for instance by Cahn and Hilliard. Remark that these fluids are sometimes also called Korteweg-de Vries or Cahn-Allen. In general continua whose deformation energy depend on the second gradient of placement are called second gradient (or Piola-Toupin or Mindlin or Green-Rivlin or Germain or second gradient) continua. In the present paper, a material description for second gradient continua is formulated. A Lagrangian action is introduced in both material and spatial description and the corresponding Euler-Lagrange bulk and boundary conditions are found. These conditions are formulated in terms of an objective deformation energy volume density in two cases: when this energy is assumed to depend on either C and grad C or on C^-1 and grad C^-1 ; where C is the Cauchy-Green deformation tensor. When particularized to energies which characterize fluid materials, the capillary fluid evolution conditions (see e.g. Casal or Seppecher for an alternative deduction based on thermodynamic arguments) are recovered. A version of Bernoulli law valid for capillary fluids is found and, in the Appendix B, useful kinematic formulas for the present variational formulation are proposed. Historical comments about Gabrio Piola's contribution to continuum analytical mechanics are also presented. In this context the reader is also referred to Capecchi and Ruta.Comment: 52 page
    • …
    corecore