17 research outputs found
Performance characterization of a multiplexed space-to-ground optical network
Advances in phased array systems for multi-beam free space optical communications are a key enabler for a new space-to-ground network architecture, namely a multiplexed optical architecture. The fundamental idea of a multiplexed space-to-ground optical network is the utilization of a multi-beam optical payload that allows each spacecraft to establish links with multiple ground stations within its line of sight. Information is then downlinked in parallel, from the satellite to the ground, through the subset of links not disrupted by clouds. In this paper we evaluate the performance of a multiplexed optical space-to-ground architecture from a systems perspective, with particular emphasis on the effect of cloud correlation in the network throughput. In particular, we first derive the expected data volume returned in a multiplexed architecture as a function of the optical network availability and the system total capacity. Then, we compare the performance of the proposed multiplexed architecture against a traditional single-beam downlink system that utilizes site diversity to mitigate cloud coverage effects. This comparison is based on two canonical scenarios, a global highly uncorrelated network representative of a geosynchronous satellite; and local, highly correlated, network representative of a low Earth orbit spacecraft. Through this analysis, we demonstrate that multiplexed architectures can improve the throughput of a space-to-ground optical network as compared to that of a single ground telescope without requiring a beam switching mechanism
Architecting space communication networks under mission demand uncertainty
NASAs Space Network has been a successful program that has provided reliable communication and navigation services for three decades. As the third generation of satellites is being launched, alternatives to the current architecture of the system are being studied in order to improve the performance of the system, reduce its costs and facilitate its integration with the Near Earth Network and the Deep Space Network. Within this context, past research has proven the feasibility of efficiently exploring a large space of alternative network architectures using a tradespace search framework. Architecting a space communication network is a complex task that requires consideration of uncertainty, namely (1) factoring in customer demand variability, (2) predicting technology improvements and (3) considering possible budgetary constraints. This paper focuses on adding uncertainty associated with (1) to the existing communications network architecture tool by describing a heuristic-based model to derive mission concept of operations (conops) as a function of communication requirements. The accuracy of the model is assessed by comparing real conops from current TDRSS-supported missions with the predicted concept of operations. The model is used to analyze how customer forecast uncertainty affects the choice of the future network architecture. In particular, four customer scenarios are generated and compared with the current TDRSS capabilities.United States. National Aeronautics and Space Administration (NNX11AR70G
Uncertainty quantification of network availability for networks of optical ground stations
This paper analyzes differences in the availability of networks of optical ground stations computed using different methods and datasets, and quantifies the uncertainty of the results. For that purpose, we first review existing methods proposed in the literature, and then existing cloud coverage datasets, and we compare the results obtained using different methods and datasets for several scenarios. Finally, we propose a new probabilistic global cloud coverage model that aggregates values from existing datasets and quantifies the uncertainty in measuring cloud probability, and present a method to compute the availability of a network of multiple optical ground stations, along with the corresponding uncertainty.Fundación Obra Social de La Caix
Nanosatellite optical downlink experiment: design, simulation, and prototyping
The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10 Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.United States. National Aeronautics and Space Administration. Research Fellowship ProgramLincoln Laboratory (Lincoln Scholars)Lincoln Laboratory (Military Fellowship Program)Fundación Obra Social de La Caixa (Fellowship)Samsung FellowshipUnited States. Air Force (Assistant Secretary of Defense for Research & Engineering. Contract FAs872105C0002
Assessing the impact of real-time communication services on the space network ground segment
Communication networks to support space missions were originally architected around non-real time data services. In fact, missions have always required real-time services (e.g. telemetry and command), but the bulk of scientific data being returned to Earth has typically been highly delay tolerant. Nevertheless, future robotic and human exploration activities are rapidly pushing towards low latency, high data rate services. Examples can be found both in the near Earth domain (e.g. near real-imagery through NASAs LANCE program) and the deep space domain (e.g. HD video from Mars). Therefore, the goal of this paper is to quantify the effect of new real-time high data rate communication requirements on the ground segment of current communication networks. To that end, we start by analyzing operational schedules for NASAs Space Network (SN) in order to characterize the utilization of the overall network in terms of total data volume and contact time, as well as identify current mission drivers. These results are compared against proposed network requirements for future robotic and human near Earth exploration activities in order to quantitatively assess gaps in the SN capabilities. Using these results, we implement a rule-based expert system that translates SN-specific operational contacts into high-level data requirements for the ground segment of the network. We then exercise the expert system in order to derive the requirements that future exploration activities will impose on the SN. Finally quantify the impact of real-time data delivery services across NASAs ground segment by computing the wide-area network cost for different levels of data timeliness
Architecting Space Communication Networks under Mission Demand Uncertainty
Abstract-NASAs Space Network has been a successful program that has provided reliable communication and navigation services for three decades. As the third generation of satellites is being launched, alternatives to the current architecture of the system are being studied in order to improve the performance of the system, reduce its costs and facilitate its integration with the Near Earth Network and the Deep Space Network. Within this context, past research has proven the feasibility of efficiently exploring a large space of alternative network architectures using a tradespace search framework. Architecting a space communication network is a complex task that requires consideration of uncertainty, namely (1) factoring in customer demand variability, (2) predicting technology improvements and (3) considering possible budgetary constraints. This paper focuses on adding uncertainty associated with (1) to the existing communications network architecture tool by describing a heuristic-based model to derive mission concept of operations (conops) as a function of communication requirements. The accuracy of the model is assessed by comparing real conops from current TDRSS-supported missions with the predicted concept of operations. The model is used to analyze how customer forecast uncertainty affects the choice of the future network architecture. In particular, three customer scenarios are generated (low, medium and high load) and compared with the current TDRSS capabilities
A technical comparison of three low earth orbit satellite constellation systems to provide global broadband
Copyright © 2018 by the International Astronautical Federation (IAF). All rights reserved. The idea of providing Internet access from space has made a strong comeback in recent years. After a relatively quiet period following the setbacks suffered by the projects proposed in the 90's, a new wave of proposals for large constellations of low Earth orbit (LEO) satellites to provide global broadband access emerged in 2014 - 2016. Compared to their predecessors, the main differences of these systems are: increased performance that results from the use of digital communication payloads, advanced modulation schemes, multi-beam antennas, and more sophisticated frequency reuse schemes, as well as the overall cost reductions from advanced manufacturing processes and reduced launch costs. This paper compares three such large LEO satellite constellations, namely SpaceX's 4,425 satellites Ku-Ka-band system, OneWeb's 720 satellites Ku-Ka-band system, and Telesat's 117 satellites Ka-band system. First, we present the system architecture of each of the constellations (as described in their respective FCC filings), highlighting the similarities and differences amongst the three systems. Following that, we develop a statistical method to estimate the total system throughput (sellable capacity), considering both the orbital dynamics of the space-segment and the variability in performance induced by atmospheric conditions both for the user and feeder links. Given that the location and number of ground stations play a major role in determining the total system throughput, and since the characteristics of the ground segment are not described in the FCC applications, we then run an optimization procedure to minimize the total number of stations required to support the system throughput. Finally, we conclude by identifying some of the major technical challenges that the three systems will have to overcome before becoming operational
Connecting the other half: Exploring options for the 50% of the population unconnected to the internet
© 2021 Elsevier Ltd As of the end of 2019, 46.4% of the world's population does not have regular access to the Internet. Bringing the more than 3.5 billion individuals still unconnected online is the primary goal for multiple international organizations, including the ITU and the UN Broadband Commission. Two important barriers that restrict connectivity are the lack of infrastructure and affordability. To address these barriers, several novel concepts that involve spaceborne and airborne platforms have been proposed to provide connectivity at a lower cost (improve affordability) to a wider reach of people (extend infrastructure). We develop a techno-economic methodology to assess the potential impact of space and aerial concepts in expanding connectivity to uncovered and under-served regions. In particular, constellations of geostationary orbit (GEO) satellites, large constellations of medium Earth orbit (MEO) and low Earth orbit (LEO) satellites, and high- and low-altitude aerial platforms are studied. Results show that under the current scenario, the impact of space and aerial systems in terms of expanding connectivity would be rather modest; the current cost of satellite technology (~$200 per Mbps/month) are affordable for less than 1% of the uncovered and under-served population in the countries of interest. In a future scenario in 8–10 years, space systems have the highest potential to bring uncovered and under-served populations online, being a viable technology for 24% of the population in these countries