3 research outputs found

    Electroweak Limits on General New Vector Bosons

    Full text link
    We study extensions of the Standard Model with general new vector bosons. The full Standard Model gauge symmetry is used to classify the extra vectors and constrain their couplings. We derive the corresponding effective Lagrangian, valid at energies lower than the mass of the extra vectors, and use it to extract limits from electroweak precision observables, including LEP 2 data. We consider both universal and nonuniversal couplings to fermions. We study the interplay of several extra vectors, which can have the effect of opening new regions in parameter space. In particular, it allows to explain the anomaly in the bottom forward-backward asymmetry with perturbative couplings. Finally, we analyze quantitatively the implications for the Higgs mass.Comment: Latex 50 pages, 12 eps figures. Typos fixed, comments and references adde

    Electroweak constraints on see-saw messengers and their implications for LHC

    Get PDF
    We review the present electroweak precision data constraints on the mediators of the three types of see-saw mechanisms. Except in the see-saw mechanism of type I, with the heavy neutrino singlets being mainly produced through their mixing with the Standard Model leptons, LHC will be able to discover or put limits on new scalar (see-saw of type II) and lepton (see-saw of type III) triplets near the TeV. If discovered, it may be possible in the simplest models to measure the light neutrino mass and mixing properties that neutrino oscillation experiments are insensitive to.Comment: 8 pages, 4 figures, To appear in the Proceedings of the Rencontres de Moriond 2008 EW Session, La Thuile (Italy), March 1-8, 200

    The Impact of Kaluza-Klein Excited W Boson on the Single Top at LHC and Comparison with other Models

    Full text link
    We study the s-channel single top quark production at the LHC in the context of extra dimension theories, including the Kaluza-Klein (KK) decomposition. It is shown that the presence of the first KK excitation of WW gauge boson can reduce the total cross section of s-channel single top production considerably if MWKK∼2.2TeVM_{W_{KK}}\sim2.2 \rm TeV (3.5TeV3.5 \rm TeV) for 7TeV7\rm TeV (14TeV14\rm TeV) in proton-proton collisions. Then the results will be compared with the impacts of other beyond Standard Model (SM) theories on the cross section of single top s-channel. The possibility of distinguishing different models via their effects on the production cross section of the s-channel is discussed.Comment: 23 pages,6 figure
    corecore