517 research outputs found
High-energy magnetic excitations in overdoped LaSrCuO studied by neutron and resonant inelastic X-ray scattering
We have performed neutron inelastic scattering and resonant inelastic X-ray
scattering (RIXS) at the Cu- edge to study high-energy magnetic
excitations at energy transfers of more than 100 meV for overdoped
LaSrCuO with ( K) and
(non-superconducting) using identical single crystal samples for the two
techniques. From constant-energy slices of neutron scattering cross-sections,
we have identified magnetic excitations up to ~250 meV for . Although
the width in the momentum direction is large, the peak positions along the (pi,
pi) direction agree with the dispersion relation of the spin-wave in the
non-doped LaCuO (LCO), which is consistent with the previous RIXS
results of cuprate superconductors. Using RIXS at the Cu- edge, we have
measured the dispersion relations of the so-called paramagnon mode along both
(pi, pi) and (pi, 0) directions. Although in both directions the neutron and
RIXS data connect with each other and the paramagnon along (pi, 0) agrees well
with the LCO spin-wave dispersion, the paramagnon in the (pi, pi) direction
probed by RIXS appears to be less dispersive and the excitation energy is lower
than the spin-wave of LCO near (pi/2, pi/2). Thus, our results indicate
consistency between neutron inelastic scattering and RIXS, and elucidate the
entire magnetic excitation in the (pi, pi) direction by the complementary use
of two probes. The polarization dependence of the RIXS profiles indicates that
appreciable charge excitations exist in the same energy range of magnetic
excitations, reflecting the itinerant character of the overdoped sample. A
possible anisotropy in the charge excitation intensity might explain the
apparent differences in the paramagnon dispersion in the (pi, pi) direction as
detected by the X-ray scattering.Comment: 7 pages, 7 figure
Magnetic field control of cycloidal domains and electric polarization in multiferroic BiFeO
The magnetic field induced rearrangement of the cycloidal spin structure in
ferroelectric mono-domain single crystals of the room-temperature multiferroic
BiFeO is studied using small-angle neutron scattering (SANS). The cycloid
propagation vectors are observed to rotate when magnetic fields applied
perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value
of 5\,T. In light of these experimental results, a phenomenological model
is proposed that captures the rearrangement of the cycloidal domains, and we
revisit the microscopic origin of the magnetoelectric effect. A new coupling
between the magnetic anisotropy and the polarization is proposed that explains
the recently discovered magnetoelectric polarization to the rhombohedral axis
Topological energy barrier for skyrmion lattice formation in MnSi
We report the direct measurement of the topological skyrmion energy barrier
through a hysteresis of the skyrmion lattice in the chiral magnet MnSi.
Measurements were made using small-angle neutron scattering with a custom-built
resistive coil to allow for high-precision minor hysteresis loops. The
experimental data was analyzed using an adapted Preisach model to quantify the
energy barrier for skyrmion formation and corroborated by the minimum-energy
path analysis based on atomistic spin simulations. We reveal that the skyrmion
lattice in MnSi forms from the conical phase progressively in small domains,
each of which consisting of hundreds of skyrmions, and with an activation
barrier of several eV.Comment: Final accepted versio
Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT)
Catalysis is involved in around 85 % of manufacturing industry and contributes an estimated 25 % to the global domestic product, with the majority of the processes relying on heterogeneous catalysis. Despite the importance in different global segments, the fundamental understanding of heterogeneously catalysed processes lags substantially behind that achieved in other fields. The newly established Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) targets innovative concepts that could contribute to the scientific developments needed in the research field to achieve net zero greenhouse gas emissions in the chemical industries. This Viewpoint Article presents some of our research activities and visions on the current and future challenges of heterogeneous catalysis regarding green industry and the circular economy by focusing explicitly on critical processes. Namely, hydrogen production, ammonia synthesis, and carbon dioxide reduction, along with new aspects of acetylene chemistry
- …