588 research outputs found

    Impact of spin-orbit coupling on quantum Hall nematic phases

    Full text link
    Anisotropic charge transport is observed in a two-dimensional (2D) hole system in a perpendicular magnetic field at filling factors nu=7/2, nu=11/2, and nu=13/2 at low temperature. In stark contrast, the transport at nu=9/2 is isotropic for all temperatures. Isotropic hole transport at nu=7/2 is restored for sufficiently low 2D densities or an asymmetric confining potential. The density and symmetry dependences of the observed anisotropies suggest that strong spin-orbit coupling in the hole system contributes to the unusual transport behavior.Comment: 4 pages, 4 figure

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Get PDF
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    Theory of suppressed shot-noise at ν=2/(2p+χ)\nu=2/(2p+\chi)

    Full text link
    We study the edge states of fractional quantum Hall liquid at bulk filling factor ν=2/(2p+χ)\nu=2/(2p+\chi) with pp being an even integer and χ=±1\chi=\pm 1. We describe the transition from a conductance plateau G=νG0=νe2/hG=\nu G_0=\nu e^2/h to another plateau G=G0/(p+χ)G=G_0/(p+\chi) in terms of chiral Tomonaga-Luttinger liquid theory. It is found that the fractional charge qq which appears in the classical shot-noise formula SI=2qS_{I}=2q is q=e/(2p+χ)q=e/(2p+\chi) on the conductance plateau at G=νG0G=\nu G_0 whereas on the plateau at G=G0/(p+χ)G=G_0/(p+\chi) it is given by q=e/(p+χ)q=e/(p+\chi). For p=2p=2 and χ=1\chi=-1 an alternative hierarchy constructions is also discussed to explain the suppressed shot-noise experiment at bulk filling factor ν=2/3\nu=2/3.Comment: Typos in Eqs. (5-7) correcte

    Colored noise in the fractional Hall effect: duality relations and exact results

    Full text link
    We study noise in the problem of tunneling between fractional quantum Hall edge states within a four probe geometry. We explore the implications of the strong-weak coupling duality symmetry existent in this problem for relating the various density-density auto-correlations and cross-correlations between the four terminals. We identify correlations that transform as either ``odd'' or ``anti-symmetric'', or ``even'' or ``symmetric'' quantities under duality. We show that the low frequency noise is colored, and that the deviations from white noise are exactly related to the differential conductance. We show explicitly that the relationship between the slope of the low frequency noise spectrum and the differential conductance follows from an identity that holds to {\it all} orders in perturbation theory, supporting the results implied by the duality symmetry. This generalizes the results of quantum supression of the finite frequency noise spectrum to Luttinger liquids and fractional statistics quasiparticles.Comment: 14 pages, 3 figure
    corecore