10,660 research outputs found

    City-wide Analysis of Electronic Health Records Reveals Gender and Age Biases in the Administration of Known Drug-Drug Interactions

    Full text link
    The occurrence of drug-drug-interactions (DDI) from multiple drug dispensations is a serious problem, both for individuals and health-care systems, since patients with complications due to DDI are likely to reenter the system at a costlier level. We present a large-scale longitudinal study (18 months) of the DDI phenomenon at the primary- and secondary-care level using electronic health records (EHR) from the city of Blumenau in Southern Brazil (pop. 340,000\approx 340,000). We found that 181 distinct drug pairs known to interact were dispensed concomitantly to 12\% of the patients in the city's public health-care system. Further, 4\% of the patients were dispensed drug pairs that are likely to result in major adverse drug reactions (ADR)---with costs estimated to be much larger than previously reported in smaller studies. The large-scale analysis reveals that women have a 60\% increased risk of DDI as compared to men; the increase becomes 90\% when considering only DDI known to lead to major ADR. Furthermore, DDI risk increases substantially with age; patients aged 70-79 years have a 34\% risk of DDI when they are dispensed two or more drugs concomitantly. Interestingly, a statistical null model demonstrates that age- and female-specific risks from increased polypharmacy fail by far to explain the observed DDI risks in those populations, suggesting unknown social or biological causes. We also provide a network visualization of drugs and demographic factors that characterize the DDI phenomenon and demonstrate that accurate DDI prediction can be included in healthcare and public-health management, to reduce DDI-related ADR and costs

    Relativistic Quark Spin Coupling Effects in the Nucleon Electromagnetic Form Factors

    Full text link
    We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found.Comment: 13 pages, needs axodraw.ps and axodraw.sty for diagrams of Fig.

    Gravitational Waves from Wobbling Pulsars

    Full text link
    The prospects for detection of gravitational waves from precessing pulsars have been considered by constructing fully relativistic rotating neutron star models and evaluating the expected wave amplitude hh from a galactic source. For a "typical" neutron matter equation of state and observed rotation rates, it is shown that moderate wobble angles may render an observable signal from a nearby source once the present generation of interferometric antennas becomes operative.Comment: PlainTex, 7 pp. , no figures, IAG/USP Rep. 6

    Neutron Charge Radius: Relativistic Effects and the Foldy Term

    Full text link
    The neutron charge radius is studied within a light-front model with different spin coupling schemes and wave functions. The cancellation of the contributions from the Foldy term and Dirac form factor to the neutron charge form factor is verified for large nucleon sizes and it is independent of the detailed form of quark spin coupling and wave function. For the physical nucleon our results for the contribution of the Dirac form factor to the neutron radius are insensitive to the form of the wave function while they strongly depend on the quark spin coupling scheme.Comment: 12 pages, 5 figures, Latex, Int. J. Mod. Phys.
    corecore