464 research outputs found

    Clinical and Non-Clinical Aspects of Distal Radioulnar Joint Instability

    Get PDF
    Untreated distal radioulnar joint (DRUJ) injuries can give rise to long lasting complaints. Although common, diagnosis and treatment of DRUJ injuries remains a challenge. The articulating anatomy of the distal radius and ulna, among others, enables an extensive range of forearm pronosupination movements. Stabilization of this joint is provided by both intrinsic and extrinsic stabilizers and the joint capsule. These structures transmit the load and prevent the DRUJ from luxation during movement. Several clinical tests have been suggested to determine static or dynamic DRUJ stability, but their predictive value is unclear. Radiologic evaluation of DRUJ instability begins with conventional radiographs in anterioposterior and true lateral view. If not conclusive, CT-scan seems to be the best additional modality to evaluate the osseous structures. MRI has proven to be more sensitive and specific for TFCC tears, potentially causing DRUJ instability. DRUJ instability may remain asymptomatic. Symptomatic DRUJ injuries treatment can be conservative or operative. Operative treatment should consist of restoration of osseous and ligamenteous anatomy. If not successful, salvage procedures can be performed to regain stability

    Lutzomyia Sand Fly Diversity and Rates of Infection by Wolbachia and an Exotic Leishmania Species on Barro Colorado Island, Panama

    Get PDF
    Certain sand fly species living inside or on the edge of tropical forests are well known to transmit a protozoan to humans, which in lowland Panama develops into a cutaneous form of leishmaniasis; open, itching sores on the face and extremities requiring aggressive treatment with antimonial compounds. Morphological characters and DNA sequence from mitochondrial and nuclear gene fragments permitted us to identify and then establish historical relationships among 20 common sand fly species occurring in the understory of Barro Colorado Island, a forested preserve in the middle of the Panama Canal. Individuals in three of these sand fly species were found to be 26–43% infected by Leishmania naiffi, a species hitherto known only from the Amazonian region and the Caribbean. We then screened the same 20 sand fly species for the cytoplasmically transmitted bacteria Wolbachia pipientis, finding three infected at high rates, each by a distinct strain. Lutzomyia trapidoi, the most likely transmitter of Leishmania to humans in Panama, was among the Wolbachia-infected species, thus marking it as a possible high-value target for future biocontrol studies using the bacteria either to induce mating incompatabilities or to drive selected genes into the population

    Inflammation and breast cancer. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer

    Get PDF
    Two rapidly evolving fields are converging to impact breast cancer: one has identified novel substrates of metalloproteinases that alter immune cell function, and the other has revealed a role for inflammation in human cancers. Evidence now shows that the mechanisms underlying these two fields interact in the context of breast cancer, providing new opportunities to understand this disease and uncover novel therapeutic strategies. The metalloproteinase class of enzymes is well studied in mammary gland development and physiology, but mostly in the context of extracellular matrix modification. Aberrant metalloproteinase expression has also been implicated in breast cancer progression, where these genes act as tumor modifiers. Here, we review how the metalloproteinase axis impacts mammary physiology and tumorigenesis and is associated with inflammatory cell influx in human breast cancer, and evaluate its potential as a regulator of inflammation in the mammary gland

    A gene expression fingerprint of C. elegans embryonic motor neurons

    Get PDF
    BACKGROUND: Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. RESULTS: Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which ~1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons. CONCLUSION: We have described a microarray-based method, MAPCeL, for profiling gene expression in specific C. elegans motor neurons and provide evidence that this approach can reveal candidate genes for key roles in the differentiation and function of these cells. These methods can now be applied to generate a gene expression map of the C. elegans nervous system
    • …
    corecore