58 research outputs found
Enhanced transport across entire length of plasma sheet boundary field lines leading to substorm onset
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95629/1/jgra20851.pd
Substorm triggering by new plasma intrusion: Incoherent‐scatter radar observations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95031/1/jgra20482.pd
Open‐closed field line boundary position: A parametric study using an MHD model
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94613/1/jgra17195.pd
Substorm triggering by new plasma intrusion: THEMIS all‐sky imager observations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95677/1/jgra20480.pd
Testing nowcasts of the ionospheric convection from the expanding and contracting polar cap model
The expanding/contracting polar cap (ECPC) model, or the time-dependent Dungey cycle, provides a theoretical framework for understanding solar wind-magnetosphere-ionosphere coupling. The ECPC describes the relationship between magnetopause reconnection and substorm growth phase, magnetotail reconnection and substorm expansion phase, associated changes in auroral morphology, and ionospheric convective motions. Despite the many successes of the model, there has yet to be a rigorous test of the predictions or nowcasts made regarding ionospheric convection, which remains a final hurdle for the validation of the ECPC. In this study we undertake a comparison of ionospheric convection, as measured in situ by ion drift meters on board DMSP (Defense Meteorological Satellite Program) satellites and from the ground by SuperDARN (Super Dual Auroral Radar Network), with motions nowcasted by a theoretical model. The model is coupled to measurements of changes in the size of the polar cap made using global auroral imagery from the IMAGE FUV (Imager for Magnetopause to Aurora Global Exploration Far Ultraviolet) instrument, as well as the dayside reconnection rate, estimated using the OMNI data set. The results show that we can largely nowcast the magnitudes of ionospheric convection flows using the context of our understanding of magnetic reconnection at the magnetopause and in the magnetotail
- …