8 research outputs found

    Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels

    Get PDF
    AbstractThe hallmark of fibrosis is the excessive accumulation of collagen. The deposited collagen contains increased pyridinoline cross-link levels due to an overhydroxylation of lysine residues within the collagen telopeptides. Lysyl hydroxylase 2b (LH2b) is the only lysyl hydroxylase consistently up-regulated in several forms of fibrosis, suggesting that an enhanced LH2b level is responsible for the overhydroxylation of collagen telopeptides. The present paper reports the effect of profibrotic cytokines on the expression of collagen, lysyl hydroxylases and lysyl oxidase in normal human skin fibroblasts, as well as the effect on pyridinoline formation in the deposited matrix. All three isoforms of TGF-β induce a substantial increase in LH2b mRNA levels, also when expressed relatively to the mRNA levels of collagen type I α2 (COL1A2). The TGF-β isoforms also clearly influence the collagen cross-linking pathway, since higher levels of pyridinoline cross-links were measured. Similar stimulatory effects on LH2b/COL1A2 mRNA expression and pyridinoline formation were observed for IL-4, activin A, and TNF-α. An exception was BMP-2, which has no effect on LH2b/COL1A2 mRNA levels nor on pyridinoline formation. Our data show for the first time that two processes, i.e., up-regulation of LH2b mRNA levels and increased formation of pyridinoline cross-links, previously recognized to be inherent to fibrotic processes, are induced by various profibrotic cytokines

    Mitochondrial Membrane Potential in Human Neutrophils Is Maintained by Complex III Activity in the Absence of Supercomplex Organisation

    Get PDF
    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this ΔΨm for the generation of ATP. Methods and Principal Findings: Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but ΔΨm was still decreased byinhibition of complex III, confirming the role of the respiratory chain in maintaining ΔΨm. Complex V did not maintain ΔΨm by consumption of ATP, as has previously been suggested for eosinophils shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were ladding in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercimplex organisation while gaining increased aerobic glycolysis, just like neutrophils. Conclusions: We show that neutrophils can maintain ΔΨm via the glycerol-3-phosphate shuttle, wereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors

    Differential effects of age, cytomegalovirus-seropositivity and end-stage renal disease (ESRD) on circulating T lymphocyte subsets

    Get PDF
    The age- and cytomegalovirus (CMV)-seropositivity-related changes in subsets and differentiation of circulating T cells were investigated in end-stage renal disease (ESRD) patients (n = 139) and age-matched healthy individuals. The results show that CMV-seropositivity is associated with expansion of both CD4+ and CD8+ memory T cells which is already observed in young healthy individuals. In addition, CMV-seropositive healthy individuals have a more differentiated memory T cell profile. Only CMV-seropositive healthy individuals showed an age-dependent decrease in CD4+ naïve T cells. The age-related decrease in the number of CD8+ naïve T cells was CMV-independent. In contrast, all ESRD patients showed a profound naïve T-cell lymphopenia at every decade. CMV-seropositivity aggravated the contraction of CD4+ naïve T cells and increased the number of differentiated CD4+ and CD8+ memory T cells. In conclusion, CMV-seropositivity markedly alters the homeostasis of circulating T cells in healthy individuals and aggravates the T cell dysregulation observed in ESRD patients

    Uremia causes premature ageing of the T cell compartment in end-stage renal disease patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>End-stage renal disease (ESRD) patients treated with renal replacement therapy (RRT) have premature immunologically aged T cells which may underlie uremia-associated immune dysfunction. The aim of this study was to investigate whether uremia was able to induce premature ageing of the T cell compartment. For this purpose, we examined the degree of premature immunological T cell ageing by examining the T cell differentiation status, thymic output via T cell receptor excision circle (TREC) content and proliferative history via relative telomere length in ESRD patients not on RRT.</p> <p>Results</p> <p>Compared to healthy controls, these patients already had a lower TREC content and an increased T cell differentiation accompanied by shorter telomeres. RRT was able to enhance CD8<sup>+</sup> T cell differentiation and to reduce CD8<sup>+</sup> T cell telomere length in young dialysis patients. An increased differentiation status of memory CD4<sup>+</sup> T cells was also noted in young dialysis patients.</p> <p>Conclusion</p> <p>Based on these results we can conclude that uremia already causes premature immunological ageing of the T cell system and RRT further increases immunological ageing of the CD8<sup>+</sup> T cell compartment in particular in young ESRD patients.</p
    corecore