15,861 research outputs found

    The effect of core polarization on longitudinal form factors in 10^{10}B

    Full text link
    Electron scattering Coulomb form factors for the single-particle quadrupole transitions in pp-shell 10^{10}B nucleus have been studied. Core polarization effects are included through a microscopic theory that includes excitations from the core orbits up to higher orbits with 2\hbarω\omega excitations. The modified surface delta interaction (MSDI) is employed as a residual interaction. The effect of core polarization is found essential in both the transition strengths and momentum transfer dependence of form factors, and gives a remarkably good agreement with the measured data with no adjustable parameters.Comment: 4 pages, 5 figure

    Pair Correlations, Short Range Order and Dispersive Excitations in the Quasi-Kagome Quantum Magnet Volborthite

    Get PDF
    We present spatial and dynamic information on the s=1/2 distorted kagome antiferromagnet volborthite, Cu3V2O7(OD)2.2D2O, obtained by polarized and inelastic neutron scattering. The instantaneous structure factor, S(Q), is dominated by nearest neighbor pair correlations, with short range order at wave vectors Q1=0.65(3) {\AA}^-1 and Q2=1.15(5) {\AA}^-1 emerging below 5 K. The excitation spectrum, S(Q,{\omega}), reveals two steep branches dispersing from Q1 and Q2, and a flat mode at {\omega}=5.0(2) meV. The results allow us to identify the cross-over at T*=1 K in 51V NMR and specific heat measurements as the build-up of correlations at Q_1. We compare our data to theoretical models proposed for volborthite, and demonstrate that the excitation spectrum can be explained by spin-wave-like excitations with anisotropic exchange parameters, as also suggested by recent local density calculations.Comment: Rewritten article resubmitted to Phys. Rev. Lett. 021

    17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2

    Get PDF
    We report through 17O NMR, an unambiguous local determination of the intrinsic kagome lattice spin susceptibility as well as that created around non-magnetic defects issued from natural Zn/ Cu exchange in the S=1/2 (Cu2+) herbertsmithite ZnCu3(OH)6Cl2 compound. The issue of a singlet-triplet gap is addressed. The magnetic response around a defect is found to markedly differ from that observed in non-frustrated antiferromagnetic materials. Finally, we discuss our relaxation measurements in the light of Cu and Cl NMR data [cond-mat 070314] and suggest a flat q-dependence of the excitations.Comment: Accepted for publication in Phys. Rev. Lett., 3 jan. 2008 Figure 1 has been modified to include a two-components fit of the 17O NMR spectru

    Scaling of polymers in aligned rods

    Full text link
    We study the behavior of self avoiding polymers in a background of vertically aligned rods that are either frozen into random positions or free to move horizontally. We find that in both cases the polymer chains are highly elongated, with vertical and horizontal size exponents that differ by a factor of 3. Though these results are different than previous predictions, our results are confirmed by detailed computer simulations.Comment: 4 pages, 4 figure

    Theory of interlayer exchange interactions in magnetic multilayers

    Full text link
    This paper presents a review of the phenomenon of interlayer exchange coupling in magnetic multilayers. The emphasis is put on a pedagogical presentation of the mechanism of the phenomenon, which has been successfully explained in terms of a spin-dependent quantum confinement effect. The theoretical predictions are discussed in connection with corresponding experimental investigations.Comment: 18 pages, 4 PS figures, LaTeX with IOP package; v2: ref. added. Further (p)reprints available from http://www.mpi-halle.de/~theory

    Scaling of spontaneous rotation with temperature and plasma current in tokamaks

    Get PDF
    Using theoretical arguments, a simple scaling law for the size of the intrinsic rotation observed in tokamaks in the absence of momentum injection is found: the velocity generated in the core of a tokamak must be proportional to the ion temperature difference in the core divided by the plasma current, independent of the size of the device. The constant of proportionality is of the order of 10kms1MAkeV110\,\mathrm{km \cdot s^{-1} \cdot MA \cdot keV^{-1}}. When the intrinsic rotation profile is hollow, i.e. it is counter-current in the core of the tokamak and co-current in the edge, the scaling law presented in this Letter fits the data remarkably well for several tokamaks of vastly different size and heated by different mechanisms.Comment: 5 pages, 3 figure
    corecore