2,224 research outputs found
On the formation and physical properties of the Intra-Cluster Light in hierarchical galaxy formation models
We study the formation of the Intra-Cluster Light (ICL) using a semi-analytic
model of galaxy formation, coupled to merger trees extracted from N-body
simulations of groups and clusters. We assume that the ICL forms by (1) stellar
stripping of satellite galaxies and (2) relaxation processes that take place
during galaxy mergers. The fraction of ICL in groups and clusters predicted by
our models ranges between 10 and 40 per cent, with a large halo-to-halo scatter
and no halo mass dependence. We note, however, that our predicted ICL fractions
depend on the resolution: for a set of simulations with particle mass one order
of magnitude larger than that adopted in the high resolution runs used in our
study, we find that the predicted ICL fractions are ~30-40 per cent larger than
those found in the high resolution runs. On cluster scale, large part of the
scatter is due to a range of dynamical histories, while on smaller scale it is
driven by individual accretion events and stripping of very massive satellites,
, that we find to be the major contributors
to the ICL. The ICL in our models forms very late (below ), and a
fraction varying between 5 and 25 per cent of it has been accreted during the
hierarchical growth of haloes. In agreement with recent observational
measurements, we find the ICL to be made of stars covering a relatively large
range of metallicity, with the bulk of them being sub-solar.Comment: Accepted for Publication in MNRAS, 19 pages, 13 figures, 1 tabl
Vector Mosquito Surveillance Using Centers For Disease Control and Prevention Autocidal Gravid Ovitraps In San Antonio, Texas
Mosquito surveillance in large urban areas of the southern USA that border Mexico has become increasingly important due to recent transmission of Zika virus and chikungunya virus in the Americas as well as the continued threat of dengue and West Nile viruses. The vectors of these viruses, Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, co-occur in residential areas, requiring vector control entities to deploy several different trap types, often expensive and labor-intensive, to surveil these ecologically different species. We evaluated the use of a single trap type, the US Centers for Disease Control and Prevention autocidal gravid ovitraps (AGOs), to monitor all 3 vector species across residential neighborhoods in San Antonio, TX, over 12 wk (epiweeks 24–35). Mosquito abundance was highest early in our surveillance period (epiweek 25) and was driven largely by Cx. quinquefasciatus. The AGOs collected significantly more Cx. quinquefasciatus than both Aedes species, with more Ae. aegypti collected than Ae. albopictus. The average number of Ae. aegypti captured per trap was consistent across most neighborhoods except for 2 areas where one had significantly the highest and the other with the lowest mosquitoes collected per trap. The average number of Ae. albopictus captured per trap varied with no clear pattern, and Cx. quinquefasciatus were trapped most often near forested hill country neighborhoods. These results indicate that AGOs are appropriate for detecting and tracking the relative abundance of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus across a large and diverse urban landscape over time and therefore may be an inexpensive and streamlined option for vector surveillance programs in large cities
Cellular proliferation rate and insulin-like growth factor binding protein (IGFBP)-2 and IGFBP-3 and estradiol receptor alpha expression in the mammary gland of dairy heifers naturally infected with gastrointestinal nematodes during development
Mammary ductal morphogenesis during prepuberty occurs mainly in response to insulin-like growth factor-1 (IGF-1) and estradiol stimulation. Dairy heifers infected with gastrointestinal nematodes have reduced IGF-1 levels, accompanied by reduced growth rate, delayed puberty onset, and lower parenchyma-stroma relationship in their mammary glands. Immunohistochemical studies were undertaken to determine variations in cell division rate, IGF-1 system components, and estradiol receptors (ESR) during peripubertal development in the mammary glands of antiparasitic-treated and untreated Holstein heifers naturally infected with gastrointestinal nematodes. Mammary biopsies were taken at 20, 30, 40, and 70 wk of age. Proliferating cell nuclear antigen immunolabeling, evident in nuclei, tended to be higher in the parenchyma of the glands from treated heifers than in those from untreated. Insulin-like growth factor binding proteins (IGFBP) type 2 and type 3 immunolabeling was cytoplasmic and was evident in stroma and parenchyma. The IGFBP2-labeled area was lower in treated than in untreated heifers. In the treated group, a maximal expression of this protein was seen at 40 wk of age, whereas in the untreated group the labeling remained constant. No differences were observed for IGFBP3 between treatment groups or during development. Immunolabeling for α ESR (ESR1) was evident in parenchymal nuclei and was higher in treated than in untreated heifers. In the treated group, ESR1 peaked at 30 wk of age and then decreased. These results demonstrate that the parasite burden in young heifers negatively influence mammary gland development, affecting cell division rate and parameters related to estradiol and IGF-1 signaling in the gland.Escuela de Agricultura y GanaderÃa "MarÃa Cruz y Manuel L. Inchausti
Cellular proliferation rate and insulin-like growth factor binding protein (IGFBP)-2 and IGFBP-3 and estradiol receptor alpha expression in the mammary gland of dairy heifers naturally infected with gastrointestinal nematodes during development
Mammary ductal morphogenesis during prepuberty occurs mainly in response to insulin-like growth factor-1 (IGF-1) and estradiol stimulation. Dairy heifers infected with gastrointestinal nematodes have reduced IGF-1 levels, accompanied by reduced growth rate, delayed puberty onset, and lower parenchyma-stroma relationship in their mammary glands. Immunohistochemical studies were undertaken to determine variations in cell division rate, IGF-1 system components, and estradiol receptors (ESR) during peripubertal development in the mammary glands of antiparasitic-treated and untreated Holstein heifers naturally infected with gastrointestinal nematodes. Mammary biopsies were taken at 20, 30, 40, and 70 wk of age. Proliferating cell nuclear antigen immunolabeling, evident in nuclei, tended to be higher in the parenchyma of the glands from treated heifers than in those from untreated. Insulin-like growth factor binding proteins (IGFBP) type 2 and type 3 immunolabeling was cytoplasmic and was evident in stroma and parenchyma. The IGFBP2-labeled area was lower in treated than in untreated heifers. In the treated group, a maximal expression of this protein was seen at 40 wk of age, whereas in the untreated group the labeling remained constant. No differences were observed for IGFBP3 between treatment groups or during development. Immunolabeling for α ESR (ESR1) was evident in parenchymal nuclei and was higher in treated than in untreated heifers. In the treated group, ESR1 peaked at 30 wk of age and then decreased. These results demonstrate that the parasite burden in young heifers negatively influence mammary gland development, affecting cell division rate and parameters related to estradiol and IGF-1 signaling in the gland.Escuela de Agricultura y GanaderÃa "MarÃa Cruz y Manuel L. Inchausti
Dietary, Cultural, and Pathogens-Related Selective Pressures Shaped Differential Adaptive Evolution among Native Mexican Populations
Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations
The crater lake of Ilamatepec (Santa Ana) volcano, El Salvador: insights into lake gas composition and implications for monitoring
We here present the first chemical characterization of the volcanic gas plume issuing from the Santa Ana crater lake, a hyper-acidic crater lake (pH of − 0.2 to 2.5) in north-western El Salvador. Our results, obtained during regular surveys in 2017 and 2018 using a Multi-GAS instrument, demonstrate a hydrous gas composition (H2O/SO2 ratios from 32 to 205) and SO2 as the main sulfur species (H2S/SO2 = 0.03–0.1). We also find that gas composition evolved during our investigated period, with the CO2/SO2 ratio decreasing by one order of magnitude from March 2017 (37.2 ± 9.7) to November 2018 (< 3). This compositional evolution toward more magmatic (SO2-rich) compositions is interpreted in the context of the long-term evolution of the volcano following its 2005 and 2007 eruptions. We find that, in spite of reduced (background-level) seismicity, the magmatic gas supply into the lake was one order of magnitude higher in March 2017 (total volatile flux: 20,200–30,200 t/day) than in the following periods (total volatile flux: 900–10,167 t/day). We propose that the elevated magmatic/hydrothermal transport in March 2017, combined with a 15% reduction in precipitation, caused the volume of the lake to decrease, ultimately reducing its sulfur absorbing and scrubbing capacity, and hence causing the gas plume CO2/SO2 ratio to decrease. The recently observed increases in temperature, acidity, and salinity of the lake are consistent with this hypothesis. We conclude that the installation of a continuous, fully-automated Multi-GAS is highly desirable to monitor any future change in lake plume chemistry, and hence the level of degassing activity
The thick disk rotation-metallicity correlation as a fossil of an "inverse chemical gradient" in the early Galaxy
The thick disk rotation--metallicity correlation, \partial
V_\phi/\partial[Fe/H] =40\div 50 km s^{-1}dex^{-1} represents an important
signature of the formation processes of the galactic disk. We use
nondissipative numerical simulations to follow the evolution of a Milky Way
(MW)-like disk to verify if secular dynamical processes can account for this
correlation in the old thick disk stellar population. We followed the evolution
of an ancient disk population represented by 10 million particles whose
chemical abundances were assigned by assuming a cosmologically plausible radial
metallicity gradient with lower metallicity in the inner regions, as expected
for the 10-Gyr-old MW. Essentially, inner disk stars move towards the outer
regions and populate layers located at higher |z|. A rotation--metallicity
correlation appears, which well resembles the behaviour observed in our Galaxy
at a galactocentric distance between 8 kpc and 10 kpc. In particular,we measure
a correlation of \partial V_\phi/\partial[Fe/H]\simeq 60 km s^{-1}dex^{-1} for
particles at 1.5 kpc < |z| < 2.0 kpc that persists up to 6 Gyr. Our pure N-body
models can account for the V_\phi vs. [Fe/H] correlation observed in the thick
disk of our Galaxy, suggesting that processes internal to the disk such as
heating and radial migration play a role in the formation of this old stellar
component. In this scenario, the positive rotation-metallicity correlation of
the old thick disk population would represent the relic signature of an ancient
"inverse" chemical (radial) gradient in the inner Galaxy, which resulted from
accretion of primordial gas.Comment: Accepted for publication on Astronomy and Astrophysic
Study of the transverse mass spectra of strange particles in Pb-Pb collisions at 158 A GeV/c
The NA57 experiment has collected high statistics, high purity samples of
\PKzS and \PgL, and hyperons produced in Pb-Pb collisions at 158
GeV/. In this paper we present a study of the transverse mass spectra of
these particles for a sample of events corresponding to the most central 53% of
the inelastic Pb-Pb cross-section. We analyse the transverse mass distributions
in the framework of the blast-wave model for the full sample and, for the first
time at the SPS, as a function of the event centrality.Comment: 22 pages, 14 figures, submitted to J. Phys. G: Nucl. Phy
First use of a compound-specific stable isotope (CSSI) technique to trace sediment transport in upland forest catchments of Chile.
Land degradation is a problem affecting the sustainability of commercial forest plantations. The identification of critical areas prone to erosion can assist this activity to better target soil conservation efforts. Here we present the first use of the carbon-13 signatures of fatty acids (C14 to C24) in soil samples for spatial and temporal tracing of sediment transport in river bodies of upland commercial forest catchments in Chile. This compound-specific stable isotope (CSSI) technique was tested as a fingerprinting approach to determine the degree of soil erosion in pre-harvested forest catchments with surface areas ranging from 12 to 40ha. For soil apportionment a mixing model based on a Bayesian inference framework was used (CSSIAR v.2.0). Approximately four potential sediment sources were used for the calculations of all of the selected catchments. Unpaved forestry roads were shown to be the main source of sediment deposited at the outlet of the catchments (30-75%). Furthermore, sampling along the stream channel demonstrated that sediments were mainly comprised of sediment coming from the unpaved roads in the upper part of the catchments (74-98%). From this it was possible to identify the location and type of primary land use contributing to the sediment delivered at the outlet of the catchments. The derived information will allow management to focus efforts to control or mitigate soil erosion by improving the runoff features of the forest roads. The use of this CSSI technique has a high potential to help forestry managers and decision makers to evaluate and mitigate sources of soil erosion in upland forest catchments. It is important to highlight that this technique can also be a good complement to other soil erosion assessment and geological fingerprinting techniques, especially when attempting to quantify (sediment loads) and differentiate which type of land use most contributes to sediment accumulation
- …