122 research outputs found

    Quantum breaking time near classical equilibrium points

    Get PDF
    By using numerical and semiclassical methods, we evaluate the quantum breaking, or Ehrenfest time for a wave packet localized around classical equilibrium points of autonomous one-dimensional systems with polynomial potentials. We find that the Ehrenfest time diverges logarithmically with the inverse of the Planck constant whenever the equilibrium point is exponentially unstable. For stable equilibrium points, we have a power law divergence with exponent determined by the degree of the potential near the equilibrium point.Comment: 4 pages, 5 figure

    Semiclassical transmission across transition states

    Full text link
    It is shown that the probability of quantum-mechanical transmission across a phase space bottleneck can be compactly approximated using an operator derived from a complex Poincar\'e return map. This result uniformly incorporates tunnelling effects with classically-allowed transmission and generalises a result previously derived for a classically small region of phase space.Comment: To appear in Nonlinearit

    On the spectrum of the Laplace operator of metric graphs attached at a vertex -- Spectral determinant approach

    Full text link
    We consider a metric graph G\mathcal{G} made of two graphs G1\mathcal{G}_1 and G2\mathcal{G}_2 attached at one point. We derive a formula relating the spectral determinant of the Laplace operator SG(γ)=det(γΔ)S_\mathcal{G}(\gamma)=\det(\gamma-\Delta) in terms of the spectral determinants of the two subgraphs. The result is generalized to describe the attachment of nn graphs. The formulae are also valid for the spectral determinant of the Schr\"odinger operator det(γΔ+V(x))\det(\gamma-\Delta+V(x)).Comment: LaTeX, 8 pages, 7 eps figures, v2: new appendix, v3: discussions and ref adde

    Families of spherical caps: spectra and ray limit

    Full text link
    We consider a family of surfaces of revolution ranging between a disc and a hemisphere, that is spherical caps. For this family, we study the spectral density in the ray limit and arrive at a trace formula with geodesic polygons describing the spectral fluctuations. When the caps approach the hemisphere the spectrum becomes equally spaced and highly degenerate whereas the derived trace formula breaks down. We discuss its divergence and also derive a different trace formula for this hemispherical case. We next turn to perturbative corrections in the wave number where the work in the literature is done for either flat domains or curved without boundaries. In the present case, we calculate the leading correction explicitly and incorporate it into the semiclassical expression for the fluctuating part of the spectral density. To the best of our knowledge, this is the first calculation of such perturbative corrections in the case of curvature and boundary.Comment: 28 pages, 7 figure

    Semi-classical analysis and passive imaging

    Full text link
    Passive imaging is a new technique which has been proved to be very efficient, for example in seismology: the correlation of the noisy fields, computed from the fields recorded at different points, is strongly related to the Green function of the wave propagation. The aim of this paper is to provide a mathematical context for this approach and to show, in particular, how the methods of semi-classical analysis can be be used in order to find the asymptotic behaviour of the correlations.Comment: Invited paper to appear in NONLINEARITY; Accepted Revised versio

    Construction de valeurs propres doubles du laplacien de Hodge-de Rham

    Full text link
    On any compact manifold of dimension greater than 3, we exhibit a metric whose first positive eigenvalue for the Laplacian acting on p-form is of multiplicity 2. As a corollary, we prescribe the volume and any finite part of the spectrum of the Hodge Laplacian with multiplicity 1 or 2.Comment: 14 pages, 4 figures, in french. v2: new example

    Almost tight lower bounds for hard cutting problems in embedded graphs

    Get PDF

    Dirac Operators and the Calculation of the Connes Metric on arbitrary (Infinite) Graphs

    Full text link
    As an outgrowth of our investigation of non-regular spaces within the context of quantum gravity and non-commutative geometry, we develop a graph Hilbert space framework on arbitrary (infinite) graphs and use it to study spectral properties of graph-Laplacians and graph-Dirac-operators. We define a spectral triplet sharing most of the properties of what Connes calls a spectral triple. With the help of this scheme we derive an explicit expression for the Connes-distance function on general directed or undirected graphs. We derive a series of apriori estimates and calculate it for a variety of examples of graphs. As a possibly interesting aside, we show that the natural setting of approaching such problems may be the framework of (non-)linear programming or optimization. We compare our results (arrived at within our particular framework) with the results of other authors and show that the seeming differences depend on the use of different graph-geometries and/or Dirac operators.Comment: 27 pages, Latex, comlementary to an earlier paper, general treatment of directed and undirected graphs, in section 4 a series of general results and estimates concerning the Connes Distance on graphs together with examples and numerical estimate

    Amplitude distribution of eigenfunctions in mixed systems

    Full text link
    We study the amplitude distribution of irregular eigenfunctions in systems with mixed classical phase space. For an appropriately restricted random wave model a theoretical prediction for the amplitude distribution is derived and good agreement with numerical computations for the family of limacon billiards is found. The natural extension of our result to more general systems, e.g. with a potential, is also discussed.Comment: 13 pages, 3 figures. Some of the pictures are included in low resolution only. For a version with pictures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab

    Zitterbewegung and semiclassical observables for the Dirac equation

    Full text link
    In a semiclassical context we investigate the Zitterbewegung of relativistic particles with spin 1/2 moving in external fields. It is shown that the analogue of Zitterbewegung for general observables can be removed to arbitrary order in \hbar by projecting to dynamically almost invariant subspaces of the quantum mechanical Hilbert space which are associated with particles and anti-particles. This not only allows to identify observables with a semiclassical meaning, but also to recover combined classical dynamics for the translational and spin degrees of freedom. Finally, we discuss properties of eigenspinors of a Dirac-Hamiltonian when these are projected to the almost invariant subspaces, including the phenomenon of quantum ergodicity
    corecore