7 research outputs found
Qubit-Qutrit Separability-Probability Ratios
Paralleling our recent computationally-intensive (quasi-Monte Carlo) work for
the case N=4 (quant-ph/0308037), we undertake the task for N=6 of computing to
high numerical accuracy, the formulas of Sommers and Zyczkowski
(quant-ph/0304041) for the (N^2-1)-dimensional volume and (N^2-2)-dimensional
hyperarea of the (separable and nonseparable) N x N density matrices, based on
the Bures (minimal monotone) metric -- and also their analogous formulas
(quant-ph/0302197) for the (non-monotone) Hilbert-Schmidt metric. With the same
seven billion well-distributed (``low-discrepancy'') sample points, we estimate
the unknown volumes and hyperareas based on five additional (monotone) metrics
of interest, including the Kubo-Mori and Wigner-Yanase. Further, we estimate
all of these seven volume and seven hyperarea (unknown) quantities when
restricted to the separable density matrices. The ratios of separable volumes
(hyperareas) to separable plus nonseparable volumes (hyperareas) yield
estimates of the separability probabilities of generically rank-six (rank-five)
density matrices. The (rank-six) separability probabilities obtained based on
the 35-dimensional volumes appear to be -- independently of the metric (each of
the seven inducing Haar measure) employed -- twice as large as those (rank-five
ones) based on the 34-dimensional hyperareas. Accepting such a relationship, we
fit exact formulas to the estimates of the Bures and Hilbert-Schmidt separable
volumes and hyperareas.(An additional estimate -- 33.9982 -- of the ratio of
the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite
clearly close to integral too.) The doubling relationship also appears to hold
for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit
exact formulas for the Hilbert-Schmidt separable volumes and hyperareas.Comment: 36 pages, 15 figures, 11 tables, final PRA version, new last
paragraph presenting qubit-qutrit probability ratios disaggregated by the two
distinct forms of partial transpositio
Trace and antitrace maps for aperiodic sequences, their extensions and applications
We study aperiodic systems based on substitution rules by means of a
transfer-matrix approach. In addition to the well-known trace map, we
investigate the so-called `antitrace' map, which is the corresponding map for
the difference of the off-diagonal elements of the 2x2 transfer matrix. The
antitrace maps are obtained for various binary, ternary and quaternary
aperiodic sequences, such as the Fibonacci, Thue-Morse, period-doubling,
Rudin-Shapiro sequences, and certain generalizations. For arbitrary
substitution rules, we show that not only trace maps, but also antitrace maps
exist. The dimension of the our antitrace map is r(r+1)/2, where r denotes the
number of basic letters in the aperiodic sequence. Analogous maps for specific
matrix elements of the transfer matrix can also be constructed, but the maps
for the off-diagonal elements and for the difference of the diagonal elements
coincide with the antitrace map. Thus, from the trace and antitrace map, we can
determine any physical quantity related to the global transfer matrix of the
system. As examples, we employ these dynamical maps to compute the transmission
coefficients for optical multilayers, harmonic chains, and electronic systems.Comment: 13 pages, REVTeX, now also includes applications to electronic
systems, some references adde