3 research outputs found

    Supramolecular Materials for Optical and Electrochemical Biosensors

    Get PDF
    It is incontestable that the interactions and bonds that keep molecules united to generate unique supramolecular compounds, with individual properties, morphologies and behaviour, are of special dynamics and singular forces. Therefore, it is necessary to discuss and consider the types of interactions that may occur in a determined system, their dynamics and number, which directly act on the energetic balance that strengthen the union between participants and give rise to a supramolecule

    New Materials to Solve Energy Issues through Photochemical and Photophysical Processes: The Kinetics Involved

    Get PDF
    Kinetic rates of energy production are extremely controlled by the competing processes that occur in systems capable of energy transfer. Besides organic and inorganic compounds already known as electronically actives, supramolecular systems can be thought to form energy transfer complexes to efficiently convert, for instance, light into electricity and the mechanisms for that can be of any kind. Photophysical and photochemical processes can simultaneously occur in such systems to provide energy conversion, by competing mechanisms or collaborative ones. Thus, to investigate the kinetic rates of each process and to understand the dynamics of the electronic excited states population and depopulation in strategically structured materials, can offer important tools to efficiently make use of this not always so evident power of supramolecular materials. In this chapter, we present the state-of-the-art of the use of photophysical processes and photochemical changes, presented by new materials and devices to provide a control of energy transfer processes and enable distinct applications, since energy conversion to sensing and imaging techniques to material characterization

    Production of Hydrogen and their Use in Proton Exchange Membrane Fuel Cells

    Get PDF
    This work will show an overview of the hydrogen production from ethanol by steam reforming method, using distinct catalysts, resulting in low carbon monoxide content in H2 produced; a thermodynamic analysis of reforming employing entropy maximization, the ideal condition for ethanol, and other steam reforming reactions, the state of the art of steam reforming catalysts for H2 production with low CO content. Moreover, in the second part, there will be an overview of the use of hydrogen in a proton exchange membrane fuel cell (PEMFC), the fuel cell operational conditions, a thermodynamic analysis of PEMFC, the catalysts used in the electrodes of the fuel cell, consequences of the CO presence in the hydrogen fuel feed in PEMFC, and the operation conditions for maximum output power density
    corecore