17 research outputs found

    Assessment of carnitine excretion and its ratio to plasma free carnitine as a biomarker for primary carnitine deficiency in newborns

    Get PDF
    In the Netherlands, newborns are referred by the newborn screening (NBS) Program when a low free carnitine (C0) concentration (&lt;5 μmol/l) is detected in their NBS dried blood spot. This leads to ~85% false positive referrals who all need an invasive, expensive and lengthy evaluation. We investigated whether a ratio of urine C0 / plasma C0 (RatioU:P) can improve the follow-up protocol for primary carnitine deficiency (PCD). A retrospective study was performed in all Dutch metabolic centres, using samples from newborns and mothers referred by NBS due to low C0 concentration. Samples were included when C0 excretion and plasma C0 concentration were sampled on the same day. RatioU:P was calculated as (urine C0 [μmol/mmol creatinine])/(plasma C0 [μmol/l]). Data were available for 59 patients with genetically confirmed PCD and 68 individuals without PCD. The RatioU:P in PCD patients was significantly higher (p value &lt; 0.001) than in those without PCD, median [IQR], respectively: 3.4 [1.2–9.5], 0.4 [0.3–0.8], area under the curve (AUC) 0.837. Classified for age (up to 1 month) and without carnitine suppletion (PCD; N = 12, Non-PCD; N = 40), medians were 6.20 [4.4–8.8] and 0.37 [0.24–0.56], respectively. The AUC for RatioU:P was 0.996 with a cut-off required for 100% sensitivity at 1.7 (yielding one false positive case). RatioU:P accurately discriminates between positive and false positive newborn referrals for PCD by NBS. RatioU:P is less effective as a discriminative tool for PCD in adults and for individuals that receive carnitine suppletion.</p

    Impaired Cognitive Functioning in Patients with Tyrosinemia Type I Receiving Nitisinone

    Get PDF
    ObjectiveTo examine cognitive functioning in patients with tyrosinemia type I treated with nitisinone and a protein-restricted diet.Study designWe performed a cross-sectional study to establish cognitive functioning in children with tyrosinemia type I compared with their unaffected siblings. Intelligence was measured using age-appropriate Wechsler Scales. To assess cognitive development over time, we retrieved sequential IQ scores in a single-center subset of patients. We also evaluated whether plasma phenylalanine and tyrosine levels during treatment was correlated with cognitive development.ResultsAverage total IQ score in 10 patients with tyrosinemia type I receiving nitisinone was significantly lower compared with their unaffected siblings (71 ± 13 vs 91 ± 13; P = .008). Both verbal and performance IQ subscores differed (77 ± 14 vs 95 ± 11; P < .05 and 70 ± 11 vs 87 ± 15; P < .05, respectively). Repeated IQ measurements in a single-center subset of 5 patients revealed a decline in average IQ score over time, from 96 ± 15 to 69 ± 11 (P < .001). No significant association was found between IQ score and either plasma tyrosine or phenylalanine concentration.ConclusionPatients with tyrosinemia type I treated with nitisinone are at risk for impaired cognitive function despite a protein-restricted diet

    Untargeted metabolomics for metabolic diagnostic screening with automated data interpretation using a knowledge-based algorithm

    No full text
    Untargeted metabolomics may become a standard approach to address diagnostic requests, but, at present, data interpretation is very labor-intensive. To facilitate its implementation in metabolic diagnostic screening, we developed a method for automated data interpretation that preselects the most likely inborn errors of metabolism (IEM). The input parameters of the knowledge-based algorithm were (1) weight scores assigned to 268 unique metabolites for 119 different IEM based on literature and expert opinion, and (2) metabolite Z-scores and ranks based on direct-infusion high resolution mass spectrometry. The output was a ranked list of differential diagnoses (DD) per sample. The algorithm was first optimized using a training set of 110 dried blood spots (DBS) comprising 23 different IEM and 86 plasma samples comprising 21 different IEM. Further optimization was performed using a set of 96 DBS consisting of 53 different IEM. The diagnostic value was validated in a set of 115 plasma samples, which included 58 different IEM and resulted in the correct diagnosis being included in the DD of 72% of the samples, comprising 44 different IEM. The median length of the DD was 10 IEM, and the correct diagnosis ranked first in 37% of the samples. Here, we demonstrate the accuracy of the diagnostic algorithm in preselecting the most likely IEM, based on the untargeted metabolomics of a single sample. We show, as a proof of principle, that automated data interpretation has the potential to facilitate the implementation of untargeted metabolomics for metabolic diagnostic screening, and we provide suggestions for further optimization of the algorithm to improve diagnostic accuracy

    Dried blood spot analysis: an easy and reliable tool to monitor the biochemical effect of hematopoietic stem cell transplantation in Hurler Syndrome patients

    Get PDF
    Hurler syndrome (HS), the most severe phenotype in the spectrum of mucopolysaccharidosis type I, is caused by a deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). At present, hematopoietic stem cell transplantation (HSCT) is the only treatment able to prevent disease progression in the central nervous system, and therefore considered the treatment of choice in HS patients. Because IDUA enzyme activities after HSCT have been suggested to influence the prognosis of HS patients, monitoring these activities after HSCT remains highly important. The use of dried blood spots (DBS) for enzyme analysis can be a useful alternative to the conventional leukocyte assay. Importantly, this method allows for convenient worldwide shipment, and can therefore be applied to monitor patients from larger areas of the world, or during large-scale international studies. Furthermore, this method requires only a minimal amount of blood. From 13 HS patients receiving HSCT, 36 paired whole blood and DBS samples were analyzed to assess leukocyte and DBS IDUA activities, respectively. To correct for potential interfering factors, simultaneous assay of the alpha-Galactosidase-A (AGA) activity was performed in the DBS samples and an IDUA/AGA ratio was calculated. A strong linear correlation was demonstrated between the DBS IDUA/AGA ratio and the leukocyte IDUA activity (r2 = .875, P < .001). This correlation was applicable to all enzyme activities, including the activities measured early after HSCT as well as heterozygous activities because of mixed chimerism or the use of a carrier donor. These results demonstrate that the DBS method is reliable to monitor the biochemical effect of HSCT in HS patients

    Proposal for an individualized dietary strategy in patients with very long-chain acyl-CoA dehydrogenase deficiency

    Get PDF
    Background: Patients with very long chain acyl-CoA dehydrogenase deficiency (VLCADD), a long chain fatty acid oxidation disorder, are traditionally treated with a long chain triglyceride (LCT) restricted and medium chain triglyceride (MCT) supplemented diet. Introduction of VLCADD in newborn screening (NBS) programs has led to the identification of asymptomatic newborns with VLCADD, who may have a more attenuated phenotype and may not need dietary adjustments. Objective: To define dietary strategies for individuals with VLCADD based on the predicted phenotype. Method: We evaluated long-term dietary histories of a cohort of individuals diagnosed with VLCADD identified before the introduction of VLCADD in NBS and their beta-oxidation (LC-FAO) flux score (rate of oleate oxidation) in cultured skin fibroblasts in relation to the clinical outcome. Based on these results a dietary strategy is proposed. Results: Sixteen individuals with VLCADD were included. One had an LC-FAO flux score >90%, was not on a restricted diet and is asymptomatic to date. Four patients had an LC-FAO flux score <10%, and significant VLCADD related symptoms despite the use of strict diets including LCT restriction, MCT supplementation and nocturnal gastric drip feeding. Patients with an LC-FAO flux score between 10 and 90% (n = 11) showed a more heterogeneous phenotype. Conclusions: This study shows that a strict diet cannot prevent poor clinical outcome in severely affected patients and that the LC-FAO flux is a good predictor of clinical outcome in individuals with VLCADD identified before its introduction in NBS. Hereby, we propose an individualized dietary strategy based on the LC-FAO flux score

    Direct infusion based metabolomics identifies metabolic disease in patients’ dried blood spots and plasma

    No full text
    In metabolic diagnostics, there is an emerging need for a comprehensive test to acquire a complete view of metabolite status. Here, we describe a non-quantitative direct-infusion high-resolution mass spectrometry (DI-HRMS) based metabolomics method and evaluate the method for both dried blood spots (DBS) and plasma. 110 DBS of 42 patients harboring 23 different inborn errors of metabolism (IEM) and 86 plasma samples of 38 patients harboring 21 different IEM were analyzed using DI-HRMS. A peak calling pipeline developed in R programming language provided Z-scores for ~1875 mass peaks corresponding to ~3835 metabolite annotations (including isomers) per sample. Based on metabolite Z-scores, patients were assigned a ‘most probable diagnosis’ by an investigator blinded for the known diagnoses of the patients. Based on DBS sample analysis, 37/42 of the patients, corresponding to 22/23 IEM, could be correctly assigned a ‘most probable diagnosis’. Plasma sample analysis, resulted in a correct ‘most probable diagnosis’ in 32/38 of the patients, corresponding to 19/21 IEM. The added clinical value of the method was illustrated by a case wherein DI-HRMS metabolomics aided interpretation of a variant of unknown significance (VUS) identified by whole-exome sequencing. In summary, non-quantitative DI-HRMS metabolomics in DBS and plasma is a very consistent, high-throughput and nonselective method for investigating the metabolome in genetic disease
    corecore