293 research outputs found

    Ligninases production and partial purification of mnp from brazilian fungal isolate in submerged fermentation.

    Get PDF
    ABSTRACT: The potential of ligninases as a green tool for effective valorization of lignin can be shown through enzymatic cocktails containing different lignin degrading enzymes. The present study deals with the screening of potential fungal strains useful for the liquefaction of bark containing lignin. Three different local isolates (Pleurotus ostreatus POS97/14, Pycnoporus sanguineus and the local isolated fungal strain) were selected out of ten different strains for ligninases production. Maximum production of enzymes was observed in the local isolated fungal strain after ten days in submerged fermentation. The isolated fungal strain produces ligninases mainly for manganese peroxidase (MnP). The enzyme oxidized a variety of the usual MnP substrates, including lignin related phenols. Furthermore, the partial purification for MnP was determined by FPLC and the molecular weight was evaluated by SDS-PAGE

    Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in <i>Fusarium oxysporum</i>

    Get PDF
    The polyphyletic nature of many formae speciales of Fusarium oxysporum prevents molecular identification of newly encountered strains based on conserved, vertically inherited genes. Alternative molecular detection methods that could replace labor- and time-intensive disease assays are therefore highly desired. Effectors are functional elements in the pathogen-host interaction and have been found to show very limited sequence diversity between strains of the same forma specialis, which makes them potential markers for host-specific pathogenicity. We therefore compared candidate effector genes extracted from 60 existing and 22 newly generated genome assemblies, specifically targeting strains affecting cucurbit plant species. Based on these candidate effector genes, a total of 18 PCR primer pairs were designed to discriminate between each of the seven Cucurbitaceae-affecting formae speciales. When tested on a collection of strains encompassing different clonal lineages of these formae speciales, nonpathogenic strains, and strains of other formae speciales, they allowed clear recognition of the host range of each evaluated strain. Within Fusarium oxysporum f. sp. melonis more genetic variability exists than anticipated, resulting in three F. oxysporum f. sp. melonis marker patterns that partially overlapped with the cucurbit-infecting Fusarium oxysporum f. sp. cucumerinum, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. momordicae, and/or Fusarium oxysporum f. sp. lagenariae For F. oxysporum f. sp. niveum, a multiplex TaqMan assay was evaluated and was shown to allow quantitative and specific detection of template DNA quantities as low as 2.5 pg. These results provide ready-to-use marker sequences for the mentioned F. oxysporum pathogens. Additionally, the method can be applied to find markers distinguishing other host-specific forms of F. oxysporum IMPORTANCE Pathogenic strains of Fusarium oxysporum are differentiated into formae speciales based on their host range, which is normally restricted to only one or a few plant species. However, horizontal gene transfer between strains in the species complex has resulted in a polyphyletic origin of host specificity in many of these formae speciales. This hinders accurate and rapid pathogen detection through molecular methods. In our research, we compared the genomes of 88 strains of F. oxysporum with each other, specifically targeting virulence-related genes that are typically highly similar within each forma specialis. Using this approach, we identified marker sequences that allow the discrimination of F. oxysporum strains affecting various cucurbit plant species through different PCR-based methods

    Specific members of the TOPLESS family are susceptibility genes for Fusarium wilt in tomato and Arabidopsis

    Get PDF
    Vascular wilt diseases caused by Fusarium oxysporum are a major threat to many agriculturally important crops. Genetic resistance is rare and inevitably overcome by the emergence of new races. To identify potentially durable and non-race-specific genetic resistance against Fusarium wilt diseases, we set out to identify effector targets in tomato that mediate susceptibility to the fungus. For this purpose, we used the SIX8 effector protein, an important and conserved virulence factor present in many pathogenic F. oxysporum isolates. Using protein pull-downs and yeast two-hybrid assays, SIX8 was found to interact specifically with two members of the tomato TOPLESS family: TPL1 and TPL2. Loss-of-function mutations in TPL1 strongly reduced disease susceptibility to Fusarium wilt and a tpl1;tpl2 double mutant exerted an even higher level of resistance. Similarly, Arabidopsis tpl;tpr1 mutants became significantly less diseased upon F. oxysporum inoculation as compared to wildtype plants. We conclude that TPLs encode susceptibility genes whose mutation can confer resistance to F. oxysporum

    Assessment of carnitine excretion and its ratio to plasma free carnitine as a biomarker for primary carnitine deficiency in newborns

    Get PDF
    In the Netherlands, newborns are referred by the newborn screening (NBS) Program when a low free carnitine (C0) concentration (&lt;5 μmol/l) is detected in their NBS dried blood spot. This leads to ~85% false positive referrals who all need an invasive, expensive and lengthy evaluation. We investigated whether a ratio of urine C0 / plasma C0 (RatioU:P) can improve the follow-up protocol for primary carnitine deficiency (PCD). A retrospective study was performed in all Dutch metabolic centres, using samples from newborns and mothers referred by NBS due to low C0 concentration. Samples were included when C0 excretion and plasma C0 concentration were sampled on the same day. RatioU:P was calculated as (urine C0 [μmol/mmol creatinine])/(plasma C0 [μmol/l]). Data were available for 59 patients with genetically confirmed PCD and 68 individuals without PCD. The RatioU:P in PCD patients was significantly higher (p value &lt; 0.001) than in those without PCD, median [IQR], respectively: 3.4 [1.2–9.5], 0.4 [0.3–0.8], area under the curve (AUC) 0.837. Classified for age (up to 1 month) and without carnitine suppletion (PCD; N = 12, Non-PCD; N = 40), medians were 6.20 [4.4–8.8] and 0.37 [0.24–0.56], respectively. The AUC for RatioU:P was 0.996 with a cut-off required for 100% sensitivity at 1.7 (yielding one false positive case). RatioU:P accurately discriminates between positive and false positive newborn referrals for PCD by NBS. RatioU:P is less effective as a discriminative tool for PCD in adults and for individuals that receive carnitine suppletion.</p

    Proline and COMT Status Affect Visual Connectivity in Children with 22q11.2 Deletion Syndrome

    Get PDF
    Background Individuals with the 22q11.2 deletion syndrome (22q11DS) are at increased risk for schizophrenia and Autism Spectrum Disorders (ASDs). Given the prevalence of visual processing deficits in these three disorders, a causal relationship between genes in the deleted region of chromosome 22 and visual processing is likely. Therefore, 22q11DS may represent a unique model to understand the neurobiology of visual processing deficits related with ASD and psychosis. Methodology We measured Event-Related Potentials (ERPs) during a texture segregation task in 58 children with 22q11DS and 100 age-matched controls. The C1 component was used to index afferent activity of visual cortex area V1; the texture negativity wave provided a measure for the integrity of recurrent connections in the visual cortical system. COMT genotype and plasma proline levels were assessed in 22q11DS individuals. Principal Findings Children with 22q11DS showed enhanced feedforward activity starting from 70 ms after visual presentation. ERP activity related to visual feedback activity was reduced in the 22q11DS group, which was seen as less texture negativity around 150 ms post presentation. Within the 22q11DS group we further demonstrated an association between high plasma proline levels and aberrant feedback/feedforward ratios, which was moderated by the COMT158 genotype. Conclusions These findings confirm the presence of early visual processing deficits in 22q11DS. We discuss these in terms of dysfunctional synaptic plasticity in early visual processing areas, possibly associated with deviant dopaminergic and glutamatergic transmission. As such, our findings may serve as a promising biomarker related to the development of schizophrenia among 22q11DS individuals

    Impaired Cognitive Functioning in Patients with Tyrosinemia Type I Receiving Nitisinone

    Get PDF
    ObjectiveTo examine cognitive functioning in patients with tyrosinemia type I treated with nitisinone and a protein-restricted diet.Study designWe performed a cross-sectional study to establish cognitive functioning in children with tyrosinemia type I compared with their unaffected siblings. Intelligence was measured using age-appropriate Wechsler Scales. To assess cognitive development over time, we retrieved sequential IQ scores in a single-center subset of patients. We also evaluated whether plasma phenylalanine and tyrosine levels during treatment was correlated with cognitive development.ResultsAverage total IQ score in 10 patients with tyrosinemia type I receiving nitisinone was significantly lower compared with their unaffected siblings (71 ± 13 vs 91 ± 13; P = .008). Both verbal and performance IQ subscores differed (77 ± 14 vs 95 ± 11; P < .05 and 70 ± 11 vs 87 ± 15; P < .05, respectively). Repeated IQ measurements in a single-center subset of 5 patients revealed a decline in average IQ score over time, from 96 ± 15 to 69 ± 11 (P < .001). No significant association was found between IQ score and either plasma tyrosine or phenylalanine concentration.ConclusionPatients with tyrosinemia type I treated with nitisinone are at risk for impaired cognitive function despite a protein-restricted diet
    • …
    corecore