99 research outputs found

    International delphi consensus on the management of AQP4-IgG+ NMOSD: recommendations for eculizumab, inebilizumab, and satralizumab

    Get PDF
    BACKGROUND AND OBJECTIVES: Neuromyelitis optica spectrum disorder (NMOSD) is a rare debilitating autoimmune disease of the CNS. Three monoclonal antibodies were recently approved as maintenance therapies for aquaporin-4 immunoglobulin G (AQP4-IgG)-seropositive NMOSD (eculizumab, inebilizumab, and satralizumab), prompting the need to consider best practice therapeutic decision-making for this indication. Our objective was to develop validated statements for the management of AQP4-IgG-seropositive NMOSD, through an evidence-based Delphi consensus process, with a focus on recommendations for eculizumab, inebilizumab, and satralizumab. METHODS: We recruited an international panel of clinical experts in NMOSD and asked them to complete a questionnaire on NMOSD management. Panel members received a summary of evidence identified through a targeted literature review and provided free-text responses to the questionnaire based on both the data provided and their clinical experience. Responses were used to generate draft statements on NMOSD-related themes. Statements were voted on over a maximum of 3 rounds; participation in at least 1 of the first 2 rounds was mandatory. Panel members anonymously provided their level of agreement (6-point Likert scale) on each statement. Statements that failed to reach a predefined consensus threshold (≥67%) were revised based on feedback and then voted on in the next round. Final statements were those that met the consensus threshold (≥67%). RESULTS: The Delphi panel comprised 24 experts, who completed the Delphi process in November 2021 after 2 voting rounds. In round 1, 23/25 statements reached consensus and were accepted as final. The 2 statements that failed to reach consensus were revised. In round 2, both revised statements reached consensus. Twenty-five statements were agreed in total: 11 on initiation of or switching between eculizumab, inebilizumab, and satralizumab; 3 on monotherapy/combination therapy; 7 on safety and patient population considerations; 3 on biomarkers/patient-reported outcomes; and 1 on research gaps. DISCUSSION: An established consensus method was used to develop statements relevant to the management of AQP4-IgG-seropositive NMOSD. These international statements will be valuable for informing individualized therapeutic decision-making and could form the basis for standardized practice guidelines

    Hyperfine structure of Tm3+ in YAG for quantum storage applications

    No full text
    International audienceQuantum storage of photons in an atomic ensemble can be obtained by using three-level K systems. In these schemes, two levels are coupled by optical transitions to a third one. Ideally, the two transitions should have similar intensities and long coherence lifetimes. Rare earth ion doped crystals are attractive materials for quantum storage because their hyperfine levels can have coherence lifetimes longer than 100 ls and thus can be used to build K systems. Tm3+ ions are especially interesting since they can be excited by ultra-stable laser diodes. In this paper, the hyperfine structures of the 3H6(0) and 3H4(0) crystal field levels of Tm3+ in Y3Al5O12 are investigated by hole burning spectroscopy under a magnetic field. The results are compared to theoretical calculations and found to be in reasonable agreement. Moreover, it is shown that an appropriate magnetic field is able to relax the selection rule on the nuclear spin projection, an absolutely necessary condition to obtain an efficient three-level K system with Tm3+ in this host. Finally, a magnetic field orientation optimized with respect to the K system transition intensity ratio is predicted for a convenient experimental set-up
    • …
    corecore