17 research outputs found

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening

    Get PDF
    An attractive approach to accelerate cheese ripening is to induce lysis of Lactococcus lactis starter strains for facilitated release of intracellular enzymes involved in flavor formation. Controlled expression of the lytic genes lytA and lytH, which encode the lysin and the holin proteins of the lactococcal bacteriophage ΦUS3, respectively, was accomplished by application of a food-grade nisin-inducible expression system. Simultaneous production of lysin and holin is essential to obtain efficient lysis and concomitant release of intracellular enzymes as exemplified by complete release of the debittering intracellular aminopeptidase N. Production of holin alone leads to partial lysis of the host cells, whereas production of lysin alone does not cause significant lysis. Model cheese experiments in which the inducible holin-lysin overproducing strain was used showed a fourfold increase in release of L-Lactate dehydrogenase activity into the curd relative to the control strain and the holin-overproducing strain, demonstrating the suitability of the system for cheese applications.

    Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling

    Get PDF
    Comparative molecular modeling was performed with repressor protein Rro of the temperate Lactococcus lactis bacteriophage r1t using the known 3D-structures of related repressors in order to obtain thermolabile derivatives of Rro. Rro residues presumed to stabilize a nonhomologous but structurally conserved hydrophobic pocket, which was shown to be important for thermostability of the Escherichia coli bacteriophage lambda repressor Cl, were randomized. Of the derivatives that exhibited various temperature-sensitive phenotypes, one was shown to hold promise for both fundamental and industrial applications that require the controlled production of (heterologous) proteins in L. lactis.</p

    Bifidobacterium longum l-Arabinose Isomerase—Overexpression in Lactococcus lactis, Purification, and Characterization

    No full text
    Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (L-AI) was cloned and overexpressed in Lactococcus lactis using a phosphate-depletion-inducible expression system. The purified B. longum L-AI was characterized using D-galactose and L-arabinose as the substrates. The enzyme was active and stable at acidic pH with an optimum at pH 6.0–6.5. The enzyme showed the highest activity at 55 °C during a 20-min incubation at pH 6.5. The Km value was 120 mM for L-arabinose and 590 mM for D-galactose. The V max was 42 U mg−1 with L-arabinose and 7.7 U mg−1 with D-galactose as the substrates. The enzyme had very low requirement for metal ions for catalytic activity, but it was stabilized by divalent metal ions (Mg2+, Mn2+). The enzyme bound the metal ions so tightly that they could not be fully removed from the active site by EDTA treatment. Using purified B. longum L-AI as the catalyst at 35 °C, equilibrium yields of 36 % D-tagatose and 11 % L-ribulose with 1.67 M D-galactose and L-arabinose, respectively, as the substrates were reached

    Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering

    No full text
    We report the engineering of Lactococcus lactis to produce the amino acid L-alanine. The primary end product of sugar metabolism in wild-type L. lactis is lactate (homolactic fermentation). The terminal enzymatic reaction (pyruvate + NADH-->L-lactate + NAD(+)) is performed by L-lactate dehydrogenase (L-LDH). We rerouted the carbon flux toward alanine by expressing the Bacillus sphaericus alanine dehydrogenase (L-AlaDH; pyruvate + NADH + NH4+-->L-alanine + NAD(+) + H2O). Expression of L-AlaDH in an L-LDH-deficient strain permitted production of alanine as the sole end product (homoalanine fermentation). Finally, stereospecific production (>99%) of L-alanine was achieved by disrupting the gene encoding alanine racemase, opening the door to the industrial production of this stereoisomer in food products or bioreactors
    corecore