20 research outputs found

    Soft tissue tumor imaging in adults: European Society of Musculoskeletal Radiology-Guidelines 2023—overview, and primary local imaging: how and where?

    Get PDF
    Objectives: Early, accurate diagnosis is crucial for the prognosis of patients with soft tissue sarcomas. To this end, standardization of imaging algorithms, technical requirements, and reporting is therefore a prerequisite. Since the first European Society of Musculoskeletal Radiology (ESSR) consensus in 2015, technical achievements, further insights into specific entities, and the revised WHO-classification (2020) and AJCC staging system (2017) made an update necessary. The guidelines are intended to support radiologists in their decision-making and contribute to interdisciplinary tumor board discussions. Materials and methods: A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements were scored online by level of agreement (0 to 10) during two iterative rounds. Either “group consensus,” “group agreement,” or “lack of agreement” was achieved. Results: Eight sections were defined that finally contained 145 statements with comments. Overall, group consensus was reached in 95.9%, and group agreement in 4.1%. This communication contains the first part consisting of the imaging algorithm for suspected soft tissue tumors, methods for local imaging, and the role of tumor centers. Conclusion: Ultrasound represents the initial triage imaging modality for accessible and small tumors. MRI is the modality of choice for the characterization and local staging of most soft tissue tumors. CT is indicated in special situations. In suspicious or likely malignant tumors, a specialist tumor center should be contacted for referral or teleradiologic second opinion. This should be done before performing a biopsy, without exception. Clinical relevance: The updated ESSR soft tissue tumor imaging guidelines aim to provide best practice expert consensus for standardized imaging, to support radiologists in their decision-making, and to improve examination comparability both in individual patients and in future studies on individualized strategies. Key Points: ‱ Ultrasound remains the best initial triage imaging modality for accessible and small suspected soft tissue tumors. ‱ MRI is the modality of choice for the characterization and local staging of soft tissue tumors in most cases; CT is indicated in special situations. Suspicious or likely malignant tumors should undergo biopsy. ‱ In patients with large, indeterminate or suspicious tumors, a tumor reference center should be contacted for referral or teleradiologic second opinion; this must be done before a biopsy

    Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma

    Get PDF
    Multiple myeloma is a malignant B-cell neoplasm that involves the skeleton in approximately 80% of the patients. With an average age of 60 years and a 5-years survival of nearly 45% Brenner et al. (Blood 111:2516–2520, 35) the onset is to be classified as occurring still early in life while the disease can be very aggressive and debilitating. In the last decades, several new imaging techniques were introduced. The aim of this review is to compare the different techniques such as radiographic survey, multidetector computed tomography (MDCT), whole-body magnetic resonance imaging (WB-MRI), fluorodeoxyglucose positron emission tomography- (FDG-PET) with or without computed tomography (CT), and 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) scintigraphy. We conclude that both FDG-PET in combination with low-dose CT and whole-body MRI are more sensitive than skeleton X-ray in screening and diagnosing multiple myeloma. WB-MRI allows assessment of bone marrow involvement but cannot detect bone destruction, which might result in overstaging. Moreover, WB-MRI is less suitable in assessing response to therapy than FDG-PET. The combination of PET with low-dose CT can replace the golden standard, conventional skeletal survey. In the clinical practise, this will result in upstaging, due to the higher sensitivity

    Soft tissue tumor imaging in adults: whole-body staging in sarcoma, non-malignant entities requiring special algorithms, pitfalls and special imaging aspects. Guidelines 2024 from the European Society of Musculoskeletal Radiology (ESSR)

    Get PDF
    ObjectivesThe revised European Society of Musculoskeletal Radiology (ESSR) consensus guidelines on soft tissue tumor imaging represent an update of 2015 after technical advancements, further insights into specific entities, and revised World Health Organization (2020) and AJCC (2017) classifications. This second of three papers covers algorithms once histology is confirmed: (1) standardized whole-body staging, (2) special algorithms for non-malignant entities, and (3) multiplicity, genetic tumor syndromes, and pitfalls.Materials and methodsA validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements that had undergone interdisciplinary revision were scored online by the level of agreement (0 to 10) during two iterative rounds, that could result in 'group consensus', 'group agreement', or 'lack of agreement'.ResultsThe three sections contain 24 statements with comments. Group consensus was reached in 95.8% and group agreement in 4.2%. For whole-body staging, pulmonary MDCT should be performed in all high-grade sarcomas. Whole-body MRI is preferred for staging bone metastasis, with [18F]FDG-PET/CT as an alternative modality in PET-avid tumors. Patients with alveolar soft part sarcoma, clear cell sarcoma, and angiosarcoma should be screened for brain metastases. Special algorithms are recommended for entities such as rhabdomyosarcoma, extraskeletal Ewing sarcoma, myxoid liposarcoma, and neurofibromatosis type 1 associated malignant peripheral nerve sheath tumors. Satisfaction of search should be avoided in potential multiplicity.ConclusionStandardized whole-body staging includes pulmonary MDCT in all high-grade sarcomas; entity-dependent modifications and specific algorithms are recommended for sarcomas and non-malignant soft tissue tumors.Clinical relevance statementThese updated ESSR soft tissue tumor imaging guidelines aim to provide support in decision-making, helping to avoid common pitfalls, by providing general and entity-specific algorithms, techniques, and reporting recommendations for whole-body staging in sarcoma and non-malignant soft tissue tumors.Key Points..

    Soft tissue tumor imaging in adults: European Society of Musculoskeletal Radiology-Guidelines 2023-overview, and primary local imaging: how and where?

    Get PDF
    OBJECTIVES: Early, accurate diagnosis is crucial for the prognosis of patients with soft tissue sarcomas. To this end, standardization of imaging algorithms, technical requirements, and reporting is therefore a prerequisite. Since the first European Society of Musculoskeletal Radiology (ESSR) consensus in 2015, technical achievements, further insights into specific entities, and the revised WHO-classification (2020) and AJCC staging system (2017) made an update necessary. The guidelines are intended to support radiologists in their decision-making and contribute to interdisciplinary tumor board discussions. MATERIALS AND METHODS: A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements were scored online by level of agreement (0 to 10) during two iterative rounds. Either "group consensus," "group agreement," or "lack of agreement" was achieved. RESULTS: Eight sections were defined that finally contained 145 statements with comments. Overall, group consensus was reached in 95.9%, and group agreement in 4.1%. This communication contains the first part consisting of the imaging algorithm for suspected soft tissue tumors, methods for local imaging, and the role of tumor centers. CONCLUSION: Ultrasound represents the initial triage imaging modality for accessible and small tumors. MRI is the modality of choice for the characterization and local staging of most soft tissue tumors. CT is indicated in special situations. In suspicious or likely malignant tumors, a specialist tumor center should be contacted for referral or teleradiologic second opinion. This should be done before performing a biopsy, without exception. CLINICAL RELEVANCE: The updated ESSR soft tissue tumor imaging guidelines aim to provide best practice expert consensus for standardized imaging, to support radiologists in their decision-making, and to improve examination comparability both in individual patients and in future studies on individualized strategies. KEY POINTS: ‱ Ultrasound remains the best initial triage imaging modality for accessible and small suspected soft tissue tumors. ‱ MRI is the modality of choice for the characterization and local staging of soft tissue tumors in most cases; CT is indicated in special situations. Suspicious or likely malignant tumors should undergo biopsy. ‱ In patients with large, indeterminate or suspicious tumors, a tumor reference center should be contacted for referral or teleradiologic second opinion; this must be done before a biopsy

    Distinct Disease Phases in Muscles of Facioscapulohumeral Dystrophy Patients Identified by MR Detected Fat Infiltration

    Get PDF
    <div><p>Facioscapulohumeral muscular dystrophy (FSHD) is an untreatable disease, characterized by asymmetric progressive weakness of skeletal muscle with fatty infiltration. Although the main genetic defect has been uncovered, the downstream mechanisms causing FSHD are not understood. The objective of this study was to determine natural disease state and progression in muscles of FSHD patients and to establish diagnostic biomarkers by quantitative MRI of fat infiltration and phosphorylated metabolites. MRI was performed at 3T with dedicated coils on legs of 41 patients (28 men/13 women, age 34–76 years), of which eleven were re-examined after four months of usual care. Muscular fat fraction was determined with multi spin-echo and T1 weighted MRI, edema by TIRM and phosphorylated metabolites by 3D <sup>31</sup>P MR spectroscopic imaging. Fat fractions were compared to clinical severity, muscle force, age, edema and phosphocreatine (PCr)/ATP. Longitudinal intramuscular fat fraction variation was analyzed by linear regression. Increased intramuscular fat correlated with age (p<0.05), FSHD severity score (p<0.0001), inversely with muscle strength (p<0.0001), and also occurred sub-clinically. Muscles were nearly dichotomously divided in those with high and with low fat fraction, with only 13% having an intermediate fat fraction. The intramuscular fat fraction along the muscle’s length, increased from proximal to distal. This fat gradient was the steepest for intermediate fat infiltrated muscles (0.07±0.01/cm, p<0.001). Leg muscles in this intermediate phase showed a decreased PCr/ATP (p<0.05) and the fastest increase in fatty infiltration over time (0.18±0.15/year, p<0.001), which correlated with initial edema (p<0.01), if present. Thus, in the MR assessment of fat infiltration as biomarker for diseased muscles, the intramuscular fat distribution needs to be taken into account. Our results indicate that healthy individual leg muscles become diseased by entering a progressive phase with distal fat infiltration and altered energy metabolite levels. Fat replacement then relatively rapidly spreads over the whole muscle.</p></div

    Typical transversal T1 weigthed and TIRM MR images of FSHD patients.

    Full text link
    <p>(<b>A</b>) Transverse T1 weigthed image of the thigh of a male FSHD patient (age 38), showing fatty infiltration (hyperintense signal) in the semimembranosus and semitendinosus muscles. (<b>B</b>) Transverse T1 weighted image of the leg of a male FSHD patient (age 66 year). Fatty infiltration of the soleus muscles is clearly visible. (<b>C</b>) Transverse T1 weighted image of the thigh of a 39-year-old male FSHD patient. (<b>D</b>) Corresponding TIRM image. The semi-membranosus is clearly fat infiltrated (grey striped arrow), this results in a nulled signal on the corresponding TIRM image. In contrast, the vastus lateralis and vastus intermedius show hyperintense signal in the TIRM images (white arrows) reflecting edema or inflammation. The different muscles in the thigh (Fig. 1.A) and calf (Fig. 1.B) are indicated by the following abbreviations: rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), sartorius (S), adductor longus (AL), adductor magnus (AM), gracillis (G), semi membranosus (SM), semi tendinosus (ST), biceps femoris long head (BFL) and biceps femoris short head (BFS), tibialis anterior (TA), extensor digitorum, longus (EDL), peroneus brevis (PB), tibialis posterior (TP), soleus medialis (SOM), soleus lateralis (SL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL).</p

    The presence of edema, as identified by TIRM imaging, correlates with increased fatty infiltration, as reflected in changes in T1 weighted images.

    Full text link
    <p>(<b>A</b>) TIRM and T1 weighted images of a 76 year-old male FSHD patient. (<b>B</b>) TIRM and T1 weighted images of a 39 year-old male FSHD patient. (<b>A–B.1</b>) VL(*) and VM(**) muscles of two FSHD patients show hyperintensity on TIRM images, indicating edema. (<b>A–B.2</b>) Baseline T1 weighted images. (<b>A–B.3</b>) Follow-up T1 weighted images showing an increase of fatty infiltration after about 4 months in the VL(*) and VM(**) muscles. (<b>C)</b> SI difference between baseline and follow-up T1 weighted images is significantly different in TIRM hyperintense FSHD muscles (N = 6) compared to TIRM normal FSHD muscles (n = 14) (p<0.01).</p

    Distribution of naturally occuring fat fraction of the thigh muscles of a large cohort of FSHD patients.

    Full text link
    <p>(<b>A</b>) Fat fraction distribution over all muscles. Fat fraction of 0 signifies 100% muscle, 1 indicates 100% fat. Muscles with an intermediary fat fraction (>0.25 and <0.75) are observed, in ∌13% of the investigated muscles. (<b>B</b>) Involvement of individual thigh muscles in FSHD. Average fat fraction of 36 patients. Error bars (SEM) reflect the high variability in this fraction between patients. The SM appears to be the most affected muscle of the upper leg, having a significantly higher average fat fraction (0.54±0.41) compared to the VL or VI (0.20±0.29, 0.20±0.27, respectively). Note that fat fractions are not Gaussian distributed therefore reporting only mean±error values is not a good representation of the data.</p

    Intramuscular distribution and progression of fatty infiltration.

    Full text link
    <p>Transveral T1 weighted images at different positions of the thigh of a FSHD patient. Baseline measurement (left panels) reveals an uneven distruibution over the length of the muscle with an increasing fat infiltration from proximal (top) to distal (bottom), especially prominent in the VM, VI, AM. This fatty gradient was largest in intermediate fat infiltrated muscles, as was shown by the linear regression analyses. These intermediately fat infiltrated muscles also showed the largest increase in fatty infiltration over time. From the follow-up measurement (right panels) it is clear to see that fat is increasing distally. AM = adductor magnus; BFL = biceps femoris long head; VI = vastus intermedius; VL = vastus lateris; VM = vastus medialis.</p
    corecore