15 research outputs found
First insight into Mycobacterium tuberculosis genetic diversity in Paraguay
<p>Abstract</p> <p>Background</p> <p>We present a picture of the biodiversity of <it>Mycobacterium tuberculosis </it>in Paraguay, an inland South American country harboring 5 million inhabitants with a tuberculosis notification rate of 38/100,000.</p> <p>Results</p> <p>A total of 220 strains collected throughout the country in 2003 were classified by spoligotyping into 79 different patterns. Spoligopatterns of 173 strains matched 51 shared international types (SITs) already present in an updated version of SpolDB4, the global spoligotype database at Pasteur Institute, Guadeloupe. Our study contributed to the database 13 new SITs and 15 orphan spoligopatterns. Frequencies of major <it>M. tuberculosis </it>spoligotype lineages in our sample were as follows: Latin-American & Mediterranean (LAM) 52.3%, Haarlem 18.2%, S clade 9.5%, T superfamily 8.6%, X clade 0.9% and Beijing clade 0.5%. Concordant clustering by IS<it>6110 </it>restriction fragment length polymorphism (RFLP) and spoligotyping identified transmission in specific settings such as the Tacumbu jail in Asuncion and aboriginal communities in the Chaco. LAM genotypes were ubiquitous and predominated among both RFLP clusters and new patterns, suggesting ongoing transmission and adaptative evolution in Paraguay. We describe a new and successfully evolving clone of the Haarlem 3 sub-lineage, SIT2643, which is thus far restricted to Paraguay. We confirmed its clonality by RFLP and mycobacterial interspersed repetitive unit (MIRU) typing; we named it "Tacumbu" after the jail where it was found to be spreading. One-fifth of the spoligopatterns in our study are rarely or never seen outside Paraguay and one-tenth do not fit within any of the major phylogenetic clades in SpolDB4.</p> <p>Conclusion</p> <p>Lineages currently thriving in Paraguay may reflect local host-pathogen adaptation of strains introduced during past migrations from Europe.</p
First insight into Mycobacterium tuberculosis genetic diversity in Paraguay
Background: We present a picture of the biodiversity of Mycobacterium tuberculosis in Paraguay, an inland South American country harboring 5 million inhabitants with a tuberculosis notification rate of 38/100,000. Results: A total of 220 strains collected throughout the country in 2003 were classified by spoligotyping into 79 different patterns. Spoligopatterns of 173 strains matched 51 shared international types (SITs) already present in an updated version of SpoIDB4, the global spoligotype database at Pasteur Institute, Guadeloupe. Our study contributed to the database 13 new SITs and 15 orphan spoligopatterns. Frequencies of major M. tuberculosis spoligotype lineages in our sample were as follows: Latin-American & Mediterranean (LAM) 52.3%, Haarlem 18.2%, S clade 9.5%, T superfamily 8.6%, X clade 0.9% and Beijing clade 0.5%. Concordant clustering by IS6110 restriction fragment length polymorphism (RFLP) and spoligotyping identified transmission in specific settings such as the Tacumbu jail in Asuncion and aboriginal communities in the Chaco. LAM genotypes were ubiquitous and predominated among both RFLP clusters and new patterns, suggesting ongoing transmission and adaptative evolution in Paraguay. We describe a new and successfully evolving clone of the Haarlem 3 sub-lineage, SIT2643, which is thus far restricted to Paraguay. We confirmed its clonality by RFLP and mycobacterial interspersed repetitive unit (MIRU) typing; we named it "Tacumbu" after the jail where it was found to be spreading. One-fifth of the spoligopatterns in our study are rarely or never seen outside Paraguay and one-tenth do not fit within any of the major phylogenetic clades in SpoIDB4. Conclusion: Lineages currently thriving in Paraguay may reflect local host-pathogen adaptation of strains introduced during past migrations from Europe.Fil: Candia, Norma. Universidad Nacional de Asunción. Departamento de Biología Molecular; Paraguay.Fil: López, Beatriz. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina.Fil: Zozio, Thierry. Institut Pasteur de Guadeloupe. Unité de la Tuberculose et des Mycobacteries; Francia.Fil: Carrivale, Marcela.ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina.Fil: Diaz, Chyntia. Universidad Nacional de Asunción. Departamento de Biología Molecular; Paraguay.Fil: Russomando, Graciela. Universidad Nacional de Asunción. Departamento de Biología Molecular; Paraguay.Fil: de Romero, Nilda J. Laboratorio Central de Salud Pública; Paraguay.Fil: Jara, Juan C. Programa Nacional de Control de la Tuberculosis; Paraguay.Fil: Barrera, Lucía. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina.Fil: Rastogi, Nalin. Institut Pasteur de Guadeloupe. Unité de la Tuberculose et des Mycobacteries; Francia.Fil: Ritacco, Viviana. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina
First insight into Mycobacterium tuberculosis genetic diversity in Paraguay
Background: We present a picture of the biodiversity of Mycobacterium tuberculosis in Paraguay, an inland South American country harboring 5 million inhabitants with a tuberculosis notification rate of 38/100,000. Results: A total of 220 strains collected throughout the country in 2003 were classified by spoligotyping into 79 different patterns. Spoligopatterns of 173 strains matched 51 shared international types (SITs) already present in an updated version of SpoIDB4, the global spoligotype database at Pasteur Institute, Guadeloupe. Our study contributed to the database 13 new SITs and 15 orphan spoligopatterns. Frequencies of major M. tuberculosis spoligotype lineages in our sample were as follows: Latin-American & Mediterranean (LAM) 52.3%, Haarlem 18.2%, S clade 9.5%, T superfamily 8.6%, X clade 0.9% and Beijing clade 0.5%. Concordant clustering by IS6110 restriction fragment length polymorphism (RFLP) and spoligotyping identified transmission in specific settings such as the Tacumbu jail in Asuncion and aboriginal communities in the Chaco. LAM genotypes were ubiquitous and predominated among both RFLP clusters and new patterns, suggesting ongoing transmission and adaptative evolution in Paraguay. We describe a new and successfully evolving clone of the Haarlem 3 sub-lineage, SIT2643, which is thus far restricted to Paraguay. We confirmed its clonality by RFLP and mycobacterial interspersed repetitive unit (MIRU) typing; we named it "Tacumbu" after the jail where it was found to be spreading. One-fifth of the spoligopatterns in our study are rarely or never seen outside Paraguay and one-tenth do not fit within any of the major phylogenetic clades in SpoIDB4. Conclusion: Lineages currently thriving in Paraguay may reflect local host-pathogen adaptation of strains introduced during past migrations from Europe.Fil: Candia, Norma. Universidad Nacional de Asunción. Departamento de Biología Molecular; Paraguay.Fil: López, Beatriz. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina.Fil: Zozio, Thierry. Institut Pasteur de Guadeloupe. Unité de la Tuberculose et des Mycobacteries; Francia.Fil: Carrivale, Marcela.ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina.Fil: Diaz, Chyntia. Universidad Nacional de Asunción. Departamento de Biología Molecular; Paraguay.Fil: Russomando, Graciela. Universidad Nacional de Asunción. Departamento de Biología Molecular; Paraguay.Fil: de Romero, Nilda J. Laboratorio Central de Salud Pública; Paraguay.Fil: Jara, Juan C. Programa Nacional de Control de la Tuberculosis; Paraguay.Fil: Barrera, Lucía. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina.Fil: Rastogi, Nalin. Institut Pasteur de Guadeloupe. Unité de la Tuberculose et des Mycobacteries; Francia.Fil: Ritacco, Viviana. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Biología Molecular; Argentina
Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial
Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials.
Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure.
Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen.
Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe
Detailed stratified GWAS analysis for severe COVID-19 in four European populations
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German
Federal Ministry of Education and Research (01KI20197), Andre Franke, David
Ellinghaus and Frauke Degenhardt were supported by the Deutsche
Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic
Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal
Ministry of Education and Research (BMBF) within the framework of the
Computational Life Sciences funding concept (CompLS grant 031L0165). David
Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk
Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana
Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German
Research Foundation (DFG) through the Research Training Group 1743, "Genes,
Environment and Inflammation". This project was supported by a Covid-19 grant from
the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197).
Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione
primaria cardiovascolare primaria nella popolazione italiana; The European Union
(EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project
LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca
corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione
IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi
was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research
(Covid-Bank). This research was partly funded by a MIUR grant to the Department of
Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This
study makes use of data generated by the GCAT-Genomes for Life. Cohort study of
the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program /
Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026);
the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529).
Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en
Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional
(FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national
grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”).
Additional data included in this study was obtained in part by the COVICAT Study
Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19
Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià
and Sara Marsal were supported by the Spanish Ministry of Economy and
Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36).
Antonio Julià was also supported the by national grant PI17/00019 from the Acción
Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque
Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received
Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal
de Investigación (AEI, Spain) and the European Regional Development Fund
(FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán
and Douglas Maya Miles are supported by the “Spanish Ministry of Economy,
Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404,
PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian
government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed,
COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant
FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud.
Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health
(CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from
Research Council of Norway grant no 312780 during the conduct of the study. Dr.
Solligård: reports grants from Research Council of Norway grant no 312769. The
BioMaterialBank Nord is supported by the German Center for Lung Research (DZL),
Airway Research Center North (ARCN). The BioMaterialBank Nord is member of
popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants
from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne
Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases,
University of Cologne, Cologne, Germany. He is supported by the German Federal
Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the
German Federal Ministry of Research and Education and is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded
by Technical University of Munich, Munich, Germany. Genotyping was performed by
the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM
Technology Centre, University of Helsinki. This work was supported by grants of the
Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland
and Lower Saxony. Kerstin U. Ludwig is supported by the German Research
Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the
Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported
by the Bavarian State Ministry for Science and Arts. Part of the genotyping was
supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA
BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative
Disease Research (JPND). Additional funding was derived from the German Research
Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is
supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH
state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist
Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision
Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf
are supported by the German Center for Infection Research (DZIF). Thorsen Brenner,
Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung
Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la
Cierva Incorporacion program, grant IJC2018-035131-I funded by
MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche
Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N
Exploring the "Latin American Mediterranean" family and the RDRio lineage in Mycobacterium tuberculosis isolates from Paraguay, Argentina and Venezuela
Submitted by Sandra Infurna ([email protected]) on 2020-03-28T17:15:58Z
No. of bitstreams: 1
HarrrisonGomes_SidraVasconcelos_etal_IOC_2019.pd.pdf: 1746618 bytes, checksum: 5564ed65983e850073abda10c0053dea (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2020-03-28T17:43:14Z (GMT) No. of bitstreams: 1
HarrrisonGomes_SidraVasconcelos_etal_IOC_2019.pd.pdf: 1746618 bytes, checksum: 5564ed65983e850073abda10c0053dea (MD5)Made available in DSpace on 2020-03-28T17:43:14Z (GMT). No. of bitstreams: 1
HarrrisonGomes_SidraVasconcelos_etal_IOC_2019.pd.pdf: 1746618 bytes, checksum: 5564ed65983e850073abda10c0053dea (MD5)
Previous issue date: 2019Universidad Nacional de Asunción. Instituto de Investigaciones en Ciencias de la Salud. Departamento de Biología Molecular y Biotecnología. Asunción, Paraguay / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular aplicada às Micobactérias. Rio de Janeiro, RJ, Brasil.Universidad Nacional de Asunción. Instituto de Investigaciones en Ciencias de la Salud. Departamento de Biología Molecular y Biotecnología. Asunción, Paraguay.Universidad Nacional de Asunción. Instituto de Investigaciones en Ciencias de la Salud. Departamento de Biología Molecular y Biotecnología. Asunción, Paraguay.Instituto Nacional de Enfermedades Infecciosas, ANLIS “Carlos G. Malbran”. Servicio de Micobacterias. Buenos Aires. Argentina.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular aplicada às Micobactérias. Rio de Janeiro, RJ, Brasil..Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Microbiologia Celular, Rio de Janeiro, RJ, Brasil.Laboratorio Central de Salud Pública, MSP y BS. Asunción, Paraguay.Instituto Nacional de Enfermedades Respiratorias Emilio Coni. Buenos Aires, Argentina.Instituto de Biomedicina. Laboratorio de Tuberculosis. Caracas, Venezuela / Universidad de Las Américas Facultad de Ciencias de la Salud. One Health Research Group. Quito, Ecuador.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular aplicada às Micobactérias. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular aplicada às Micobactérias. Rio de Janeiro, RJ, Brasil.The Latin American & Mediterranean (LAM) spoligotype family is one of the most successful genotype of Mycobacterium tuberculosis worldwide and particularly prevalent in South-America. Within this family, a sublineage named Region of Difference Rio (RDRio) was reported initially in Brazil and is characterized by a genomic deletion of about 26.3 kb. This lineage seems to show a specific adaptation to the Euro-Latin American population. In this context, we sought to evaluate the LAM family and the presence of the RDRio genotype in samples from three Latin American countries including Paraguay, Venezuela and Argentina. To detect LAM strains reliably we applied a typing scheme using spoligotyping, 12 loci MIRU-VNTR, the Ag85C103 SNP and the regions of difference RDRio and RD174. IS6110-RFLP results were also used when available
Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C : A prospective observational study
Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with ≥2 clinical signs/symptoms of NP-C were considered 'suspected NP-C' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI ≥70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 [4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores ≥70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis