1,773 research outputs found
Fragmentation Experiment and Model for Falling Mercury Drops
The experiment consists of counting and measuring the size of the many
fragments observed after the fall of a mercury drop on the floor. The size
distribution follows a power-law for large enough fragments. We address the
question of a possible crossover to a second, different power-law for small
enough fragments. Two series of experiments were performed. The first uses a
traditional film photographic camera, and the picture is later treated on a
computer in order to count the fragments and classify them according to their
sizes. The second uses a modern digital camera. The first approach has the
advantage of a better resolution for small fragment sizes. The second, although
with a poorer size resolution, is more reliable concerning the counting of all
fragments up to its resolution limit. Both together clearly indicate the real
existence of the quoted crossover.
The model treats the system microscopically during the tiny time interval
when the initial drop collides with the floor. The drop is modelled by a
connected cluster of Ising spins pointing up (mercury) surrounded by Ising
spins pointing down (air). The Ising coupling which tends to keep the spins
segregated represents the surface tension. Initially the cluster carries an
extra energy equally shared among all its spins, corresponding to the coherent
kinetic energy due to the fall. Each spin which touches the floor loses its
extra energy transformed into a thermal, incoherent energy represented by a
temperature used then to follow the dynamics through Monte Carlo simulations.
Whenever a small piece becomes disconnected from the big cluster, it is
considered a fragment, and counted. The results also indicate the existence of
the quoted crossover in the fragment-size distribution.Comment: 6 pages, 3 figure
Phase transition in a mean-field model for sympatric speciation
We introduce an analytical model for population dynamics with intra-specific
competition, mutation and assortative mating as basic ingredients. The set of
equations that describes the time evolution of population size in a mean-field
approximation may be decoupled. We find a phase transition leading to sympatric
speciation as a parameter that quantifies competition strength is varied. This
transition, previously found in a computational model, occurs to be of first
order.Comment: accepted for Physica
Critical Exponents for Nuclear Multifragmentation: dynamical lattice model
We present a dynamical and dissipative lattice model, designed to mimic
nuclear multifragmentation. Monte-Carlo simulations with this model show clear
signature of critical behaviour and reproduce experimentally observed
correlations. In particular, using techniques devised for finite systems, we
could obtain two of its critical exponents, whose values are in agreement with
those of the universality class to which nuclear multifragmentation is supposed
to belong.Comment: 10 pages, 3 figures, to be published in Nuclear Physics
Simulated emergence of cyclic sexual-asexual reproduction
Motivated by the cyclic pattern of reproductive regimes observed in some
species of green flies (``{\it aphids}''), we simulate the evolution of a
population enduring harsh seasonal conditions for survival. The reproductive
regime of each female is also seasonal in principle and genetically acquired,
and can mutate for each newborn with some small probability. The results show a
sharp transition at a critical value of the survival probability in the winter,
between a reproductive regime in the fall that is predominantly sexual, for low
values of this probability, or asexual, for high values.Comment: 9 pages, 4 figures, requires RevTe
On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum
We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum
of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha,
with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay
as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously
differentiable in the strong sense and such that the matrix entries with
respect to the spectral decomposition of H obey the estimate
|V(t)_{m,n}|0,
p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be
arbitrarily small provided p is sufficiently large and \epsilon is small
enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the
diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where
\sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the
Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was
discussed earlier in the literature by Howland
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
We describe an efficient Monte Carlo algorithm using a random walk in energy
space to obtain a very accurate estimate of the density of states for classical
statistical models. The density of states is modified at each step when the
energy level is visited to produce a flat histogram. By carefully controlling
the modification factor, we allow the density of states to converge to the true
value very quickly, even for large systems. This algorithm is especially useful
for complex systems with a rough landscape since all possible energy levels are
visited with the same probability. In this paper, we apply our algorithm to
both 1st and 2nd order phase transitions to demonstrate its efficiency and
accuracy. We obtained direct simulational estimates for the density of states
for two-dimensional ten-state Potts models on lattices up to
and Ising models on lattices up to . Applying this approach to
a 3D spin glass model we estimate the internal energy and entropy at
zero temperature; and, using a two-dimensional random walk in energy and
order-parameter space, we obtain the (rough) canonical distribution and energy
landscape in order-parameter space. Preliminary data suggest that the glass
transition temperature is about 1.2 and that better estimates can be obtained
with more extensive application of the method.Comment: 22 pages (figures included
Concentração de macronutrientes em função da idade, doses de fósforo aplicadas e partes de soja (Glycine max (L.) Merrill)
This study was conducted with the objective of determining the concentration of macronutrients in the plant as function of fertilization with nitrogen, phosphorus and potassium. A 3³ factorial experiment with three replications was performed. The experimental area was located at Piracicaba (ESALQ), the soil belonging to the Guamium series. IAC-2, an indeterminate soybean cultivar, was used. N, P and K were applied in the rows at the levels of 0, 20 and 40 kg/ha (N), 0, 60 and 120 kg/ha (P(2)0(5)), and 0, 30 and 60 kg/ha (K(2)0), Plant samples were taken at 21-day intervals at emergence and continuing until partial fall of the leaves (105 days after emergence). The several plant parts were analysed for macronutrients (.N, P, K, Ca, Mg and S). The following conclusions were reached: during the period of greatest efficiency of the crop, the level of 40 kg/ha of nitrogen increased the nitrogen concentration in the upper leaves. The level of 120 kg/ha of P2O5 increased the concentration of phosphorus and potassium in the upper leaves. The highest concentration of calcium and magnesium were found in the lower leaves, while the highest concentrations of sulphur were found in the upper leaves, independent of the levels of N, P and K applied to the soil.O presente trabalho foi desenvolvido visando atingir o seguinte objetivo: determinação das concentrações dos macronutrientes, nas partes da planta, em função de níveis de adubação fosfatada. Para verificar os parâmetros propostos foi instalado um fatorial 3³ com três repetições em solo da serie Guamium, no município de Piracicaba, SP. Usou-se o cultivar IAC-2 de habito de crescimento indeterminado. Aplicou-se no sulco na ocasião da semeadura as seguintes quantidades de fertilizantes: 0, 20 e 40 kg de N por ha; 0, 60 e 120 kg de P2O5por ha; 0, 30 e 60 kg de K2O por ha. Foram igualmente incorporados 2,7 t de calcário dolomitico por ha. Foram colhidas amostras de plantas em intervalos de 21 dias, a partir da emergência, até a queda parcial das folhas aos 105 dias de idade. Conclusões: concentrações maiores de nitrogênio, fósforo, potássio e enxofre foram encontradas nas folhas superiores; e as maiores concentrações de cálcio e magnêsio localizaram-se nas folhas inferiores. As variações nas concentrações de fósforo e magnêsio com a idade das plantas, foram afetadas pelas doses de fósforo
Modulation Of The Catalytic Activity Of Porphyrins By Lipid- And Surfactant-containing Nanostructures
The structural factors modulating porphyrin activity encompass pyrrole and equatorial ligands, as well as the central metal and the number and structure of their axial ligands. Of equal importance is the microenvironment provided by apoproteins, solvents and membranes. Porphyrins are often used to construct supramolecular structures with different applications. The modulation of activity of the porphyrins has been frequently achieved by mimicking nature, i.e., by the provision of different microenvironments for these molecules. The association of porphyrins to surfactant- and lipid-containing nanostructures has changed the activity of these compounds to mimic different enzymes such as SOD, cytochrome P450, peroxidases and others. In determined conditions, the reactive forms of the porphyrins are high-valence states of oxo-metal-π cations and oxo-metal produced by the reaction with peroxides and peracids. The modulation of porphyrin activity by surfactant- and lipid-containing nanostructures has also been achieved for hemeproteins, as the lipid nanostructures affect the conformation of proteins. ©2011 Sociedade Brasileira de Química.22916211633Drain, C.M., Varotto, A., Radivojevic, I., (2009) Chem. Rev., 109, p. 1630Aida, T., Inoue, S., (2000) The Porphyrin Handbook, , Kadish, K., M. Smith, K., M. Guillard R., eds.Academic Press: San Diego ch. 42Ponka, P., (1999) Am. J. Med. Sci., 318, p. 241Da Silva, D.C., De Freitas-Silva, G., Do Nascimento, E., Rebouças, J.S., Barbeira, P.J., De Carvalho, M.E., Idemori, Y.M., (2008) J. Inorg. Biochem., 102, p. 1932Bochot, C., Bartoli, J.F., Frapart, Y., Dansette, P.M., Mansuy, D., Battioni, P., (2007) J. Mol. Catal. A.: Chem., 263, p. 200Alkordi, M.H., Liu, Y.L., Larsen, R.W., Eubank, J.F., Eddaoudi, M., (2008) J. Am. Chem. Soc., 130, p. 12639Suijkerbuijk, B., Schamhart, D.J., Kooijman, H., Spek, A.L., Van Koten, G., Gebbink, R., (2010) Dalton Trans., 39, p. 6198Groves, J.T., Nemo, T.E., (1983) J. Am. Chem. Soc., 10, p. 5786Drain, C.M., Smeureanu, G., Patel, S., Gong, X.C., Garno, J.A., (2006) New. J. Chem., 30, p. 1834Wang, Y.T., Jin, W.J., (2008) Spectrochim. Acta, Part A., 70, p. 871Komatsu, T., Moritake, W., Nakagawa, A., Tsuchida, E., (2002) Chem. - Eur. J., 8, p. 5469Nagami, H., Umakoshi, H., Shimanouchi, T., Kuboi, R., (2004) Biochem. Eng. J., 21, p. 221Szoka, F., Papahadjopoulos, D., (1980) Annu. Rev. Biophys. Bioeng., 9, p. 467Atkin, R., Craig, V.S.J., Wanless, E.J., Biggs, S., (2003) Adv. Colloid Interface Sci., 103, p. 219Grassert, I., Schinkowski, K., Vollhardt, D., Oehme, G., (1998) Chirality, 10, p. 754Hait, S.K., Moulik, S.P., (2001) J. Surfactants Deterg., 4, p. 303Glick, J., Santoyo, G., Casey, P.J., (1996) J. Biol. Chem., 271, p. 2949Maldotti, A., Andreotti, L., Molinari, A., Varani, G., Cerichelli, G., Chiarini, M., (2001) Green Chem., 3, p. 42Batrakova, E.V., Kabanov, A.V., (2008) J. Controlled Release, 130, p. 98Bangham, A.D., Standish, M.M., Watkins, J.C., (1965) J. Mol. Biol., 13, p. 238Johnson, S.M., Bangham, A.D., Hill, M.W., Korn, E.D., (1971) Biochim. Biophys. Acta. Biomembr., 233, p. 820Papahadj, D., Watkins, J.C., (1967) Biochim. Biophys. Acta, Biomembr., 135, p. 639Abramson, M.B., Katzman, R., Gregor, H.P., (1964) J. Biol. Chem., 239, p. 70Hauser, H.O., (1971) Biochem. Biophys. Res. Commun., 45, p. 1049Huang, C.H., (1969) Biochemistry, 8, p. 344Saunders, L., Gammack, D., Perrin, J., (1962) J. Pharm. Pharmacol., 14, p. 567Tien, H.T., (1974) Theory and Practice, , 1th ed.Bilayer Lipid Membranes (BLM): Marcel Dekker: New YorkRazin, S., (1972) Biochim. Biophys. Acta, Biomembr., 265, p. 241Korenbrot, J.I., (1977) Annu. Rev. Physiol., 39, p. 19Batzri, S., Korn, E.D., (1973) Biochim. Biophys. Acta, Biomembr., 298, p. 1015Deamer, D., Bangham, A.D., (1976) Biochim. Biophys. Acta, Biomembr., 443, p. 629Szoka, F., Papahadjopoulos, D., (1978) Proc. Natl. Acad. Sci. U. S. A., 75, p. 4194Mishra, P.P., Bhatnagar, J., Datta, A., (2005) J. Phys. Chem. B., 109, p. 24225Pessoto, F.S., Inada, N.M., Nepomuceno, M.D., Ruggiero, A.C., Nascimento, O.R., Vercesi, A.E., Nantes, I.L., (2009) Chem. Biol. Interact., 181, p. 400Steinbeck, C.A., Hedin, N., Chmelka, B.F., (2004) Langmuir, 20, p. 10399Vanesch, J.H., Feiters, M.C., Peters, A.M., Nolte, R.J.M., (1994) J. Phys. Chem., 98, p. 5541Barber, D.C., Freitagbeeston, R.A., Whitten, D.G., (1991) J. Phys. Chem., 95, p. 4074Maiti, N.C., Mazumdar, S., Periasamy, N.J., (1998) J. Porphyrins Phthalocyanines, 2, p. 369Schmehl, R.H., Whitten, D.G., (1981) J. Phys. Chem., 85, p. 3473Perrin, M.H., (1973) J. Chem. Phys., 59, p. 2090Zhou, X.T., Ji, H.B., (2010) Chem. Eng. J., 156, p. 411Monnereau, C., Ramos, P.H., Deutman, A.B.C., Elemans, J., Nolte, R.J.M., Rowan, A.E., (2010) J. Am. Chem. Soc., 132, p. 1529Merlau, M.L., Grande, W.J., Nguyen, S.T., Hupp, J.T., (2000) J. Mol. Catal. A: Chem., 156, p. 79Anzenbacher, P., Kral, V., Jursikova, K., Gunterova, J., Kasal, A., (1997) J. Mol. Catal. A: Chem., 118, p. 63Zhao, Y.C., Xiang, Y.Z., Pu, L., Yang, M., Yu, X.Q., (2006) Appl. Catal. A, 301, p. 176Zhou, X.T., Tang, Q.H., Ji, H.B., (2009) Tetrahedron Lett., 50, p. 6601Monfared, H.H., Aghapoor, V., Ghorbanloo, M., Mayer, P., (2010) Appl. Catal. A, 372, p. 209Heijnen, J.H.M., De Bruijn, V.G., Van Den Broeke, L.J.P., Keurentjes, J.T.F., (2003) Chem. Eng. Process., 42, p. 223Santos, A.C., Luz, R.A.S., Ferreira, L.G.F., Santos-Júnior, J.R., Silva, W.C., (2010) Quim. Nova, 33, p. 539Zhou, Y.B., Ryu, E.H., Zhao, Y., Woo, L.K., (2007) Organometallics, 26, p. 358Nantes, I.L., Crespilho, F.N., Mugnol, K.C.U., Chaves, J.C.A., Luz, R.A.S., Nascimento, O.R., Pinto, S.M.S., (2010) Circular Dichroism: Theory and Spectroscopy, , Rodgers D. S., ed.Nova Science Publishers: New York ch. 8Travascio, P., Sen, D., Bennet, A.J., (2006) Can. J. Chem., 84, p. 613Omodeo-Sale, F., Monti, D., Olliaro, P., Taramelli, D.P., (2001) Biochem. Pharmacol., 61, p. 999Ishigure, S., Mitsui, T., Ito, S., Kondo, Y., Kawabe, S., Kondo Dewa M, T., Mino, H., Nango, M., (2010) Langmuir, 26, p. 7774Umakoshi, H., Morimoto, K., Ohama, Y., Nagami, H., Shimanouchi, T., Kuboi, R., (2008) Langmuir, 24, p. 4451Prieto, T., Marcon, R.O., Prado, F.M., Caires, A.C.F., Di Mascio, P., Brochsztain, S., Nascimento, O.R., Nantes, I.L., (2006) J. Phys.Chem., 8, p. 1963Mugnol, K.C.U., Ando, R.A., Nagayasu, R.Y., Faljoni-Alario, A., Brochsztain, S., Santos, P.S., Nascimento, R.O., Nantes, I.L., (2008) Biophys. J., 94, p. 4066Nagatomo, H., Matsushita, Y., Sugamoto, K., Matsui, T., (2003) Tetrahedron: Asymmetry, 14, p. 2339Cantonetti, V., Monti, D., Venanzi, M., Bombelli, C., Ceccacci, F., Mancini, G., (2004) Tetrahedron: Asymmetry, 15, p. 1969Hiraka, K., Kanehisa, M., Tamai, M., Asayama, S., Nagaoka, S., Oyaizu, K., Yuasa, M., Kawakami, H., (2008) Colloids Surf. B, 67, p. 54Yuasa, M., Oyaizu, K., Horiuchi, A., Ogata, A., Hatsugai, T., Yamaguchi, A., Kawakami, H., (2004) Mol. Pharm., 1, p. 387Aron, J., Baldwin, D.A., Marques, H.M., Pratt, J.M., Adams, P.A., (1986) J. Inorg. Biochem., 27, p. 227Wang, J.S., Vanwart, H.E., (1989) J. Phys. Chem., 93, p. 7925Munro, O.Q., Marques, H.M., (1996) Inorg. Chem., 35, p. 3752Prieto, T., Nascimento, O.R., Tersariol, I.L.S., Faljoni-Alario, A., Nantes, I.L., (2004) J. Phys. Chem. B, 108, p. 11124Prieto, T., Nantes, I.L., Nascimento, O.R., (2004) Prog. Colloid Polym. Sci., 128, p. 1Makarska, M., Radzki, S., Legendziewicz, J., (2002) J. Alloys Compd., 341, p. 233Riposati, A., Prieto, T., Shida, C.S., Nantes, I.L., Nascimento, O.R., (2006) J. Inorg. Biochem., 100, p. 226Claiborne, A., Fridovich, I., (1979) J. Biol. Chem., 254, p. 4245Hiner, A.N.P., Ruiz, J.H., Lopez, J.N.R., Canovas, F.G., Brisset, N.C., Smith, A.T., Arnao, M.B., Acosta, M., (2002) J. Biol. Chem., 277, p. 26879Primus, J.L., Grunenwald, S., Hagedoorn, P.L., Albrecht-Gary, A.M., Mandon, D., Veeger, C.T., (2002) J. Am. Chem. Soc., 124, p. 1214Demontellano, P.R.O., (1992) Annu. Rev. Pharmacol. Toxicol., 32, p. 89Savenkova, M.I., Kuo, J.M., De Montellano, P.R.O., (1998) Biochemistry, 37, p. 10828Smith, A.T., Veitch, N.C., (1998) Curr. Opin. Chem. Biol., 2, p. 269Prieto, T., Mugnol, K.C.U., Araujo, J.C., Sousa, F.L., Soares, V.A., Cilento, G., Nantes, I.L., (2007) Catalysis and Photochemistry in Heterogeneous Media, , Nantes I. L.Brochesztain, S. eds.Research Signpost: Kerala ch. 1Zucchi, M.R., Nascimento, O.R., Faljoni-Alario, A., Prieto, T., Nantes, I.L., (2003) Biochem. J., 370, p. 671Kinnunen, P.K.J., (1992) Chem. Phys. Lipids, 63, p. 251Kawai, C., Prado, F.M., Nunes, G.L.C., Di Mascio, P., Carmona-Ribeiro, A.M., Nantes, I.L., (2005) J. Biol. Chem., 280, p. 34709Araujo, J.C., Prieto, T., Prado, F.M., Trindade, F.J., Nunes, G.L.C., Dos Santos, J.G., Di Masco, P., Nantes, I.L., (2007) J. Nanosci. Nanotechnol., 7, p. 3643Estevam, M.L., Nascimento, O.R., Baptista, M.S., Di Mascio, P., Prado, F.M., Faljoni-Alario, A., Zucchi, M.D., Nantes, I.L., (2004) J. Biol. Chem., 279, p. 39214Kawai, C., Nantes, I.L., Baptista, M.D.S., (2010) FEBS J., 277, p. 224Nantes, I.L., Faljoni-Alario, A., Vercesi, A.E., Santos, K.E., Bechara, E.J.H., (1998) Free Radic. Biol. Med., 25, p. 54
The spectral action and cosmic topology
The spectral action functional, considered as a model of gravity coupled to
matter, provides, in its non-perturbative form, a slow-roll potential for
inflation, whose form and corresponding slow-roll parameters can be sensitive
to the underlying cosmic topology. We explicitly compute the non-perturbative
spectral action for some of the main candidates for cosmic topologies, namely
the quaternionic space, the Poincare' dodecahedral space, and the flat tori. We
compute the corresponding slow-roll parameters and see we check that the
resulting inflation model behaves in the same way as for a simply-connected
spherical topology in the case of the quaternionic space and the Poincare'
homology sphere, while it behaves differently in the case of the flat tori. We
add an appendix with a discussion of the case of lens spaces.Comment: 55 pages, LaTe
- …