7 research outputs found
Binding Specificity of Sea Anemone Toxins to Nav 1.1-1.6 Sodium Channels UNEXPECTED CONTRIBUTIONS FROM DIFFERENCES IN THE IV/S3-S4 OUTER LOOP
Sea anemones are an important source of various biologically active peptides, and it is known that ATX-II from Anemonia sulcata slows sodium current inactivation. Using six different sodium channel genes (from Nav1.1 to Nav1.6), we investigated the differential selectivity of the toxins AFT-II (purified from Anthopleura fuscoviridis) and Bc-III (purified from Bunodosoma caissarum) and compared their effects with those recorded in the presence of ATX-II. Interestingly, ATX-II and AFT-II differ by only one amino acid (L36A) and Bc-III has 70% similarity. The three toxins induced a low voltage-activated persistent component primarily in the Nav1.3 and Nav1.6 channels. An analysis showed that the 18 dose-response curves only partially fit the hypothesized binding of Lys-37 (sea anemone toxin Anthopleurin B) to the Asp (or Glu) residue of the extracellular IV/S3-S4 loop in cardiac (or nervous) Na+ channels, thus suggesting the substantial contribution of some nearby amino acids that are different in the various channels. As these channels are atypically expressed in mammalian tissues, the data not only suggest that the toxicity is highly dependent on the channel type but also that these toxins and their various physiological effects should be considered prototype models for the design of new and specific pharmacological tools
Quelques Aspects du Role du Programme Tempus dans l'Internationalisation de l'Enseignement Supérior.
L’expérience de l’Institut Universitaire de Technologie (I. U. T.) de Béthune (Université d’Artois) dans le programme Tempus-Phare provient de son activité depuis le 1er septembre 1991 dans 17 projets différents générant un budget global d’environ 5 millions d’ECU
New Mastoparan Peptides in the Venom of the Solitary Eumenine Wasp Eumenes micado
Comprehensive LC-MS and MS/MS analysis of the crude venom extract from the solitary eumenine wasp Eumenes micado revealed the component profile of this venom mostly consisted of small peptides. The major peptide components, eumenine mastoparan-EM1 (EMP-EM1: LKLMGIVKKVLGAL-NH2) and eumenine mastoparan-EM2 (EMP-EM2: LKLLGIVKKVLGAI-NH2), were purified and characterized by the conventional method. The sequences of these new peptides are homologous to mastoparans, the mast cell degranulating peptides from social wasp venoms; they are 14 amino acid residues in length, rich in hydrophobic and basic amino acids, and C-terminal amidated. Accordingly, these new peptides can belong to mastoparan peptides (in other words, linear cationic α-helical peptides). Indeed, the CD spectra of these new peptides showed predominantly α-helix conformation in TFE and SDS. In biological evaluation, both peptides exhibited potent antibacterial activity, moderate degranulation activity from rat peritoneal mast cells, and significant leishmanicidal activity, while they showed virtually no hemolytic activity on human or mouse erythrocytes. These results indicated that EMP-EM peptides rather strongly associated with bacterial cell membranes rather than mammalian cell membranes
Toxicity and toxin identification in Colomesus asellus, an Amazonian (Brazil) freshwater puffer fish
Toxicity and toxin identification in Colomesus asellus, an Amazonian (Brazil) freshwater puffer fish. By using four different techniques-mouse bioassay, ELISA, HPLC and mass spectrometry-we evaluated the toxicity in the extracts of C. asellus, a freshwater puffer fish from the rivers of the Amazon, and identified for the first time the components responsible for its toxicity. The T20G10 monoclonal antibody raised against TTX, and employed in an indirect competitive enzyme immunoassay, showed very low affinity for the C. asellus extracts, indicating that TTX and its analogs are not the main toxic components of the extracts. This antibody was efficient in detecting presence of TTX in a total extract of Sphoeroides spengleri, which is one of the most toxic puffer fish found in the Atlantic coast. Extracts of C. asellus were toxic when administered intraperitonially into mice with an average toxicity of 38.6±12 mouse unit (MU)/g, while HPLC analysis indicated a lower toxin content (7.6±0 5 MU/g). The HPLC profile showed no traces of TTX, but only the presence of PSPs (STX, GTX 2 and GTX 3). These toxins were also confirmed by electrospray ionization mass spectrometry
Proteomics of the neurotoxic fraction from the sea anemone Bunodosoma cangicum venom: Novel peptides belonging to new classes of toxins
In contrast to the many studies on the venoms of scorpions, spiders, snakes and cone snails, up to now there has been no report of the proteomic analysis of sea anemones venoms. In this work we report for the first time the peptide mass fingerprint and some novel peptides in the neurotoxic fraction (Fr III) of the sea anemone Bunodosoma cangicum venom. Fr III is neurotoxic to crabs and was purified by rp-HPLC in a C-18 column, yielding 41 fractions. By checking their molecular masses by ESI-Q-Tof and MALDI-Tof MS we found 81 components ranging from near 250\ua0amu to approximately 6000\ua0amu. Some of the peptidic molecules were partially sequenced through the automated Edman technique. Three of them are peptides with near 4500\ua0amu belonging to the class of the BcIV, BDS-I, BDS-II, APETx1, APETx2 and Am-II toxins. Another three peptides represent a novel group of toxins (~ 3200\ua0amu). A further three molecules (~∼ 4900\ua0amu) belong to the group of type 1 sodium channel neurotoxins. When assayed over the crab leg nerve compound action potentials, one of the BcIV- and APETx-like peptides exhibits an action similar to the type 1 sodium channel toxins in this preparation, suggesting the same target in this assay. On the other hand one of the novel peptides, with 3176\ua0amu, displayed an action similar to potassium channel blockage in this experiment. In summary, the proteomic analysis and mass fingerprint of fractions from sea anemone venoms through MS are valuable tools, allowing us to rapidly predict the occurrence of different groups of toxins and facilitating the search and characterization of novel molecules without the need of full characterization of individual components by broader assays and bioassay-guided purifications. It also shows that sea anemones employ dozens of components for prey capture and defense
BcIV, a new paralyzing peptide obtained from the venom of the sea anemone Bunodosoma caissarum. A comparison with the Na+ channel toxin BcIII
Sea anemones produce a wide variety of biologically active compounds, such as the proteinaceous neurotoxins and cytolysins. Herein we report a new peptide, purified to homogeneity from the neurotoxic fraction of B. caissarum venom, by using gel filtration followed by rp-HPLC, naming it as BcIV. BcIV is a 41 amino acid peptide (molecular mass of 4669 amu) possessing 6 cysteines covalently linked by three disulfide bonds. This toxin has 45 and 48% of identity when compared to APETx1 and APETx2 from Anthopleura elegantissima, respectively, and 42% of identity with Am-II and BDS-I and-II obtained from Antheopsis maculata and Anemonia sulcata, respectively. This neurotoxin presents only a weak-paralyzing action (minimal Lethal Dose close to 2000\ua0μg/kg) in swimming crabs Callinectes danae. This appears to be a different effect to that caused by the type 1 sea anemone toxin BcIII that is lethal to the same animals at lower doses (LD = 219\ua0μg/kg). Circular dichroism spectra of BcIII and BcIV show a high content of β-strand secondary structure in both peptides, very similar to type 1 sodium channel toxins from various sea anemones, and to APETx1 and APETx2 from A. elegantissima, a HERG channel modulator and an ASIC3 inhibitor, respectively. Interestingly, BcIII and BcIV have similar effects on the action potential of the crab leg nerves, suggesting the same target in this tissue. As BcIII was previously reported as a Na channel effector and BcIV is inactive over Na currents of mammalian GH3 cells, we propose a species-specific action for this new molecule. A molecular model of BcIV was constructed using the structure of the APETx1 as template and putative key residues are discussed