543 research outputs found
Plant structural changes due to herbivory: Do changes in Aceria-infested coconut fruits allow predatory mites to move under the perianth?
Being minute in size, eriophyoid mites can reach places that are small enough to be inaccessible to their predators. The coconut mite, Aceria guerreronis, is a typical example; it finds partial refuge under the perianth of the coconut fruit. However, some predators can move under the perianth of the coconut fruits and attack the coconut mite. In Sri Lanka, the phytoseiid mite Neoseiulus baraki, is the most common predatory mite found in association with the coconut mite. The cross-diameter of this predatory mite is c. 3 times larger than that of the coconut mite. Nevertheless, taking this predator’s flat body and elongated idiosoma into account, it is—relative to many other phytoseiid mites—better able to reach the narrow space under the perianth of infested coconut fruits. On uninfested coconut fruits, however, they are hardly ever observed under the perianth. Prompted by earlier work on the accessibility of tulip bulbs to another eriophyoid mite and its predators, we hypothesized that the structure of the coconut fruit perianth is changed in response to damage by eriophyoid mites and as a result predatory mites are better able to enter under the perianth of infested coconut fruits. This was tested in an experiment where we measured the gap between the rim of the perianth and the coconut fruit surface in three cultivars (‘Sri Lanka Tall’, ‘Sri Lanka Dwarf Green’ and ‘Sri Lanka Dwarf Green × Sri Lanka Tall’ hybrid) that are cultivated extensively in Sri Lanka. It was found that the perianth-fruit gap in uninfested coconut fruits was significantly different between cultivars: the cultivar ‘Sri Lanka Dwarf Green’ with its smaller and more elongated coconut fruits had a larger perianth-fruit gap. In the uninfested coconut fruits this gap was large enough for the coconut mite to creep under the perianth, yet too small for its predator N. baraki. However, when the coconut fruits were infested by coconut mites, the perianth-rim-fruit gap was not different among cultivars and had increased to such an extent that the space under the perianth became accessible to the predatory mites
A New Method to Predict the Epidemiology of Fungal Keratitis by Monitoring the Sales Distribution of Antifungal Eye Drops in Brazil
Purpose: Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. Methods: Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos) were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. Results: A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (p < 0.01). A linear regression model displayed a significant association between reduced relative humidity and antifungal drug sales (R-2 = 0.17, p < 0.01). Conclusions: Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier), when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects.Conselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologico [302005/2009-9]Fundacao de Apoio ao Ensino, Pesquisa e Assistencia do Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto da Universidade de Sao PauloFundacao de Apoio ao Ensino, Pesquisa e Assistencia do Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto da Universidade de Sao Paul
Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)
Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator¿prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research
Response of Predatory Mites to a Herbivore-Induced Plant Volatile: Genetic Variation for Context-Dependent Behaviour
Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators’ responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles
Factors affecting compliance with the measles vaccination schedule in a Brazilian city
CONTEXT AND OBJECTIVE: The success of vaccination campaigns depends on the degree of adherence to immunization initiatives and schedules. Risk factors associated with children's failure to receive the measles vaccine at the correct age were studied in the city of São Paulo, Brazil. DESIGN AND SETTING: Case-control and exploratory study, in the metropolitan area of São Paulo. METHODS: The caregivers of 122 children were interviewed regarding their perceptions and understanding about the measles vaccination and the disease. RESULTS: The results showed that age, region of residence, marital status and education level were unrelated to taking measles vaccines adequately. Most individuals remembered being informed about the last annual vaccination campaign by television, but no communication channel was significantly associated with vaccination status. The answers to questions about knowledge of the disease or the vaccine, when analyzed alone, were not associated with taking measles vaccinations at the time indicated by health agencies. The results showed that, when parents felt sorry for their children who were going to receive shots, they delayed the vaccination. Most of the children did not take the measles vaccination on the exactly recommended date, but delayed or anticipated the shots. CONCLUSION: It is clear that there is no compliance with the government's recommended measles vaccination schedule (i.e. first dose at nine and second at 15 months of age, as recommended in 1999 and 2000). Feeling sorry for the children receiving shots can delay vaccination taking
Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance
This paper presents DELPHI measurements and interpretations of
cross-sections, forward-backward asymmetries, and angular distributions, for
the e+e- -> ffbar process for centre-of-mass energies above the Z resonance,
from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are
consistent with the predictions of the Standard Model and are used to study a
variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering
and several models which include physics beyond the Standard Model: the
exchange of Z' bosons, contact interactions between fermions, the exchange of
gravitons in large extra dimensions and the exchange of sneutrino in R-parity
violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.
A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events
Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the
Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy
and momentum constraint methods. The results are expressed as deviations from
the nominal LEP centre-of-mass energy, measured using other techniques. The
results are found to be compatible with the LEP Energy Working Group estimates
for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.
A Herbivorous Mite Down-Regulates Plant Defence and Produces Web to Exclude Competitors
Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences
Chagasic Thymic Atrophy Does Not Affect Negative Selection but Results in the Export of Activated CD4+CD8+ T Cells in Severe Forms of Human Disease
Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease
- …