2 research outputs found
A novel simulator for probing water infiltration in rain-triggered landslides
This study presents a specially designed dripping rainfall simulator, functional in both laboratory and field settings, developed to research water infiltration processes relevant to landslide studies. The simulator incorporates several advanced features, including adjustable rainfall parameters and precise monitoring and measurement capabilities for a range of experimental setups. The system’s calibration was achieved by measuring the volume of water over a set period, correlating it with the rainfall intensity. Experiments were conducted on a slope surface for up to five hours at a constant rainfall intensity. During this time, 3D electrical resistivity measurements were taken to assess the influence of rainfall on resistivity data, offering insights into the subsurface dynamics of water infiltration. The findings suggest that the combination of dripping rainfall simulation and 3D electrical resistivity analysis holds promise for advancing landslide risk reduction research. This paper provides an in-depth overview of the simulator’s design, functionality, and performance, emphasising its applicability for comprehensive landslide investigations.</p
Enhancing landslide predictability:Validating geophysical surveys for soil moisture detection in 2D and 3D scenarios
Every year, Brazil grapples with the destructive impact of landslides, typically during the summer season. The National Centre for Monitoring and Alerts of Natural Disasters (Cemaden) places significant emphasis on studying these phenomena to understand their processes and causes more deeply. One key challenge faced in this endeavour is the procurement of geotechnical properties of the soil in high-risk areas, with soil moisture being a crucial factor.Collecting point samples for acquiring these geotechnical parameters is not only costly but also limited in providing a comprehensive two-dimensional or three-dimensional coverage. Therefore, the primary aim of the proposed project is to validate the method of acquiring soil moisture data through geophysical surveys in both 2D and 3D scenarios.Data was gathered from soil moisture stations within Cemaden's network and various collected samples to confirm the results. To generate more controlled yet realistic conditions, a sequence of field infiltration experiments was conducted. The findings, related to the ability of the geoelectric method to define soil moisture, derived from this project form an invaluable foundation for future investigations spearheaded by the Geodynamics Group and its collaborating institutions