15 research outputs found

    Mapping gene by early life stress interactions on child subcortical brain structures: A genome-wide prospective study

    Get PDF
    BACKGROUND: Although it is well-established that both genetics and the environment influence brain development, they are typically examined separately. Here, we aimed to prospectively investigate the interactive effects of genetic variants-from a genome-wide approach-and early life stress (ELS) on child subcortical brain structures, and their association with subsequent mental health problems. METHOD: Primary analyses were conducted using data from the Generation R Study (N = 2257), including genotype and cumulative prenatal and postnatal ELS scores (encompassing life events, contextual risk, parental risk, interpersonal risk, direct victimisation). Neuroimaging data were collected at age 10 years, including intracranial and subcortical brain volumes (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus). Genome-wide association and genome-wide-by-environment interaction analyses (GWEIS, run separately for prenatal/postnatal ELS) were conducted for eight brain outcomes (i.e., 24 genome-wide analyses) in the Generation R Study (discovery). Polygenic scores (PGS) using the resulting weights were calculated in an independent (target) cohort (adolescent brain cognitive development Study; N = 10,751), to validate associations with corresponding subcortical volumes and examine links to later mother-reported internalising and externalising problems. RESULTS: One GWEIS-prenatal stress locus was associated with caudate volume (rs139505895, mapping onto PRSS12 and NDST3) and two GWEIS-postnatal stress loci with the accumbens (rs2397823 and rs3130008, mapping onto CUTA, SYNGAP1, and TABP). Functional annotation revealed that these genes play a role in neuronal plasticity and synaptic function, and have been implicated in neuro-developmental phenotypes, for example, intellectual disability, autism, and schizophrenia. None of these associations survived a more stringent correction for multiple testing across all analysis sets. In the validation sample, all PGSgenotype were associated with their respective brain volumes, but no PGSGxE associated with any subcortical volume. None of the PGS associated with internalising or externalising problems. CONCLUSIONS: This study lends novel suggestive insights into gene-environment interplay on the developing brain as well as pointing to promising candidate loci for future replication and mechanistic studies

    Multiple sclerosis risk variants influence the peripheral B-cell compartment early in life in the general population

    Get PDF
    Background and purpose: Multiple sclerosis (MS) is associated with abnormal B-cell function, and MS genetic risk alleles affect multiple genes that are expressed in B cells. However, how these genetic variants impact the B-cell compartment in early childhood is unclear. In the current study, we aim to assess whether polygenic risk scores (PRSs) for MS are associated with changes in the blood B-cell compartment in children from the general population. Methods: Six-year-old children from the population-based Generation R Study were included. Genotype data were used to calculate MS-PRSs and B-cell subset-enriched MS-PRSs, established by designating risk loci based on expression and function. Analyses of variance were performed to examine the effect of MS-PRSs on total B-cell numbers (n = 1261) as well as naive and memory subsets (n = 675). Results: After correction for multiple testing, no significant associations were observed between MS-PRSs and total B-cell numbers and frequencies of subsets therein. A naive B-cell-MS-PRS (n = 26 variants) was significantly associated with lower relative, but not absolute, naive B-cell numbers (p = 1.03 × 10−4 and p = 0.82, respectively), and higher frequencies and absolute numbers of CD27+ memory B cells (p = 8.83 × 10−4 and p = 4.89 × 10−3, respectively). These associations remained significant after adjustment for Epstein–Barr virus seropositivity and the HLA-DRB1*15:01 genotype. Conclusions: The composition of the blood B-cell compartment is associated with specific naive B-cell-associated MS risk variants during childhood, possibly contributing to MS pathophysiology later in life. Cell subset-specific PRSs may offer a more sensitive tool to define the impact of genetic risk on the immune system in diseases such as MS

    The reporting of neuropsychiatric symptoms in electronic health records of individuals with Alzheimer’s disease: a natural language processing study

    Get PDF
    Abstract Background Neuropsychiatric symptoms (NPS) are prevalent in the early clinical stages of Alzheimer’s disease (AD) according to proxy-based instruments. Little is known about which NPS clinicians report and whether their judgment aligns with proxy-based instruments. We used natural language processing (NLP) to classify NPS in electronic health records (EHRs) to estimate the reporting of NPS in symptomatic AD at the memory clinic according to clinicians. Next, we compared NPS as reported in EHRs and NPS reported by caregivers on the Neuropsychiatric Inventory (NPI). Methods Two academic memory clinic cohorts were used: the Amsterdam UMC (n = 3001) and the Erasmus MC (n = 646). Patients included in these cohorts had MCI, AD dementia, or mixed AD/VaD dementia. Ten trained clinicians annotated 13 types of NPS in a randomly selected training set of n = 500 EHRs from the Amsterdam UMC cohort and in a test set of n = 250 EHRs from the Erasmus MC cohort. For each NPS, a generalized linear classifier was trained and internally and externally validated. Prevalence estimates of NPS were adjusted for the imperfect sensitivity and specificity of each classifier. Intra-individual comparison of the NPS classified in EHRs and NPS reported on the NPI were conducted in a subsample (59%). Results Internal validation performance of the classifiers was excellent (AUC range: 0.81–0.91), but external validation performance decreased (AUC range: 0.51–0.93). NPS were prevalent in EHRs from the Amsterdam UMC, especially apathy (adjusted prevalence = 69.4%), anxiety (adjusted prevalence = 53.7%), aberrant motor behavior (adjusted prevalence = 47.5%), irritability (adjusted prevalence = 42.6%), and depression (adjusted prevalence = 38.5%). The ranking of NPS was similar for EHRs from the Erasmus MC, although not all classifiers obtained valid prevalence estimates due to low specificity. In both cohorts, there was minimal agreement between NPS classified in the EHRs and NPS reported on the NPI (all kappa coefficients < 0.28), with substantially more reports of NPS in EHRs than on NPI assessments. Conclusions NLP classifiers performed well in detecting a wide range of NPS in EHRs of patients with symptomatic AD visiting the memory clinic and showed that clinicians frequently reported NPS in these EHRs. Clinicians generally reported more NPS in EHRs than caregivers reported on the NPI

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Brouwer et al. identified genetic variants that affect rates of brain growth and atrophy. The genes are linked to early brain development and neurodegeneration and suggest involvement of metabolic processes. Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Get PDF
    Human brain structure changes throughout the lifespan. Brouwer et al. identified genetic variants that affect rates of brain growth and atrophy. The genes are linked to early brain development and neurodegeneration and suggest involvement of metabolic processes. Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging
    corecore