30,403 research outputs found
XTE J1550-564: INTEGRAL Observations of a Failed Outburst
The well known black-hole X-ray binary transient XTE J1550-564 underwent an
outburst during the spring of 2003 which was substantially underluminous in
comparison to previous periods of peak activity in that source. In addition,
our analysis shows that it apparently remained in the hard spectral state over
the duration of that outburst. This is again in sharp contrast to major
outbursts of that source in 1998/1999 during which it exhibited an irregular
light curve, multiple state changes and collimated outflows. This leads us to
classify it as a "failed outburst." We present the results of our study of the
spring 2003 event including light curves based on observations from both
INTEGRAL and RXTE. In addition, we studied the evolution of the high-energy
3-300 keV continuum spectrum using data obtained with three main instruments on
INTEGRAL. These spectra are consistent with typical low-hard-state thermal
Comptonization emission. We also consider the 2003 event in the context of a
multi-source, multi-event period-peak luminosity diagram in which it is a clear
outlyer. We then consider the possibility that the 2003 event was due to a
discrete accretion event rather than a limit-cycle instablility. In that
context, we apply model fitting to derive the timescale for viscous propagation
in the disk, and infer some physical characteristics.Comment: 22 pages, 8 figures, to be published in The Astrophysical Journa
Optical Spectroscopy of the Surface Population of the rho Ophiuchi Molecular Cloud: The First Wave of Star Formation
We present the results of optical spectroscopy of 139 stars obtained with the
Hydra multi-object spectrograph. The objects extend over a 1.3 square degree
area surrounding the main cloud of the rho Oph complex. The objects were
selected from narrowband images to have H alpha in emission. Using the presence
of strong H alpha emission, lithium absorption, location in the
Hertzsprung-Russell diagram, or previously reported x-ray emission, we were
able to identify 88 objects as young stars associated with the cloud. Strong H
alpha emission was confirmed in 39 objects with line widths consistent with
their origin in magnetospheric accretion columns. Two of the strongest
emission-line objects are young, x-ray emitting brown dwarf candidates with M8
spectral types. Comparisons of the bolometric luminosities and effective
temperatures with theoretical models suggest a medianage for this population of
2.1 Myr which is signifcantly older than the ages derived for objects in the
cloud core. It appears that these stars formed contemporaneously with low mass
stars in the Upper Scorpius subgroup, likely triggered by massive stars in the
Upper-Centaurus subgroup.Comment: 35 pages of postscript which includes seven figures (some of which
are multi-panel) and four postscript tables. Astronomical Journal (in press
Spacecraft charging and ion wake formation in the near-Sun environment
A three-dimensional (3-D), self-consistent code is employed to solve for the
static potential structure surrounding a spacecraft in a high photoelectron
environment. The numerical solutions show that, under certain conditions, a
spacecraft can take on a negative potential in spite of strong photoelectron
currents. The negative potential is due to an electrostatic barrier near the
surface of the spacecraft that can reflect a large fraction of the
photoelectron flux back to the spacecraft. This electrostatic barrier forms if
(1) the photoelectron density at the surface of the spacecraft greatly exceeds
the ambient plasma density, (2) the spacecraft size is significantly larger
than local Debye length of the photoelectrons, and (3) the thermal electron
energy is much larger than the characteristic energy of the escaping
photoelectrons. All of these conditions are present near the Sun. The numerical
solutions also show that the spacecraft's negative potential can be amplified
by an ion wake. The negative potential of the ion wake prevents secondary
electrons from escaping the part of spacecraft in contact with the wake. These
findings may be important for future spacecraft missions that go nearer to the
Sun, such as Solar Orbiter and Solar Probe Plus.Comment: 25 pages, 7 figures, accepted for publication in Physics of Plasma
The Structure and X-ray Recombination Emission of a Centrally Illuminated Accretion Disk Atmosphere and Corona
We model an accretion disk atmosphere and corona photoionized by a central
X-ray continuum source. We calculate the opacity and radiation transfer for an
array of disk radii, to obtain the two-dimensional structure of the disk and
its X-ray recombination emission. The atmospheric structure is insensitive to
the viscosity alpha. We find a feedback mechanism between the disk structure
and the central illumination, which expands the disk and increases the solid
angle subtended by the atmosphere. We model the disk of a neutron star X-ray
binary. We map the temperature, density, and ionization structure of the disk,
and we simulate the high resolution spectra observable with the Chandra and
XMM-Newton grating spectrometers. The X-ray emission lines from the disk
atmosphere are detectable, especially for high-inclination binary systems. The
grating observations of two classes of X-ray binaries already reveal important
spectral similarities with our models. The line spectrum is very sensitive to
the structure of each atmospheric layer, and it probes the heating mechanisms
in the disk. The model spectrum is dominated by double-peaked lines of H-like
and He-like ions, plus weak Fe L. Species with a broad range of ionization
levels coexist at each radius: from Fe XXVI in the hot corona, to C VI at the
base of the atmosphere. The choice of stable solutions affects the spectrum,
since a thermal instability is present in the regime where the X-ray
recombination emission is most intense.Comment: 32 pages, incl. 26 figures, accepted for publication in Ap
Interactions of Ar(9+) and metastable Ar(8+) with a Si(100) surface at velocities near the image acceleration limit
Auger LMM spectra and preliminary model simulations of Ar(9+) and metastable
Ar(8+) ions interacting with a clean monocrystalline n-doped Si(100) surface
are presented. By varying the experimental parameters, several yet undiscovered
spectroscopic features have been observed providing valuable hints for the
development of an adequate interaction model. On our apparatus the ion beam
energy can be lowered to almost mere image charge attraction. High data
acquisition rates could still be maintained yielding an unprecedented
statistical quality of the Auger spectra.Comment: 34 pages, 11 figures, http://pikp28.uni-muenster.de/~ducree
Limit-(quasi)periodic point sets as quasicrystals with p-adic internal spaces
Model sets (or cut and project sets) provide a familiar and commonly used
method of constructing and studying nonperiodic point sets. Here we extend this
method to situations where the internal spaces are no longer Euclidean, but
instead spaces with p-adic topologies or even with mixed Euclidean/p-adic
topologies.
We show that a number of well known tilings precisely fit this form,
including the chair tiling and the Robinson square tilings. Thus the scope of
the cut and project formalism is considerably larger than is usually supposed.
Applying the powerful consequences of model sets we derive the diffractive
nature of these tilings.Comment: 11 pages, 2 figures; dedicated to Peter Kramer on the occasion of his
65th birthda
The pressure of strong coupling lattice QCD with heavy quarks, the hadron resonance gas model and the large N limit
In this paper we calculate the pressure of pure lattice Yang-Mills theories
and lattice QCD with heavy quarks by means of strong coupling expansions.
Dynamical fermions are introduced with a hopping parameter expansion, which
also allows for the incorporation of finite quark chemical potential. We show
that in leading orders the results are in full agreement with expectations from
the hadron resonance gas model, thus validating it with a first principles
calculation. For pure Yang-Mills theories we obtain the corresponding ideal
glueball gas, in QCD with heavy quarks our result equals that of an ideal gas
of mesons and baryons. Another finding is that the Yang-Mills pressure in the
large N limit is of order to the calculated orders, when the inverse
't Hooft coupling is used as expansion parameter. This property is expected in
the confined phase, where our calculations take place.Comment: 12 pages, 4 figure
Molecular simulations of lipid-mediated protein-protein interactions
LSMOde Meyer, Frederick Jean-Marie Venturoli, Maddalena Smit, Beren
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans
Rationale
Preclinical studies indicate that high-frequency oscillations, above 100 Hz (HFO:100â170 Hz), are a potential translatable biomarker for pharmacological studies, with the rapid acting antidepressant ketamine increasing both gamma (40â100 Hz) and HFO.
Objectives
To assess the effect of the uncompetitive NMDA antagonist ketamine, and of D-cycloserine (DCS), which acts at the glycine site on NMDA receptors on HFO in humans.
Methods
We carried out a partially double-blind, 4-way crossover study in 24 healthy male volunteers. Each participant received an oral tablet and an intravenous infusion on each of four study days. The oral treatment was either DCS (250 mg or 1000 mg) or placebo. The infusion contained 0.5 mg/kg ketamine or saline placebo. The four study conditions were therefore placebo-placebo, 250 mg DCS-placebo, 1000 mg DCS-placebo, or placebo-ketamine.
Results
Compared with placebo, frontal midline HFO magnitude was increased by ketamine (pâ=â0.00014) and 1000 mg DCS (pâ=â0.013). Frontal gamma magnitude was also increased by both these treatments. However, at a midline parietal location, only HFO were increased by DCS, and not gamma, whilst ketamine increased both gamma and HFO at this location. Ketamine induced psychomimetic effects, as measured by the PSI scale, whereas DCS did not increase the total PSI score. The perceptual distortion subscale scores correlated with the posterior low gamma to frontal high beta ratio.
Conclusions
Our results suggest that, at high doses, a partial NMDA agonist (DCS) has similar effects on fast neural oscillations as an NMDA antagonist (ketamine). As HFO were induced without psychomimetic effects, they may prove a useful drug development target
Exploring dust around HD142527 down to 0.025" / 4au using SPHERE/ZIMPOL
We have observed the protoplanetary disk of the well-known young Herbig star
HD 142527 using ZIMPOL Polarimetric Differential Imaging with the VBB (Very
Broad Band, ~600-900nm) filter. We obtained two datasets in May 2015 and March
2016. Our data allow us to explore dust scattering around the star down to a
radius of ~0.025" (~4au). The well-known outer disk is clearly detected, at
higher resolution than before, and shows previously unknown sub-structures,
including spirals going inwards into the cavity. Close to the star, dust
scattering is detected at high signal-to-noise ratio, but it is unclear whether
the signal represents the inner disk, which has been linked to the two
prominent local minima in the scattering of the outer disk, interpreted as
shadows. An interpretation of an inclined inner disk combined with a dust halo
is compatible with both our and previous observations, but other arrangements
of the dust cannot be ruled out. Dust scattering is also present within the
large gap between ~30 and ~140au. The comparison of the two datasets suggests
rapid evolution of the inner regions of the disk, potentially driven by the
interaction with the close-in M-dwarf companion, around which no polarimetric
signal is detected.Comment: 11 pages, 7 figures, accepted for publication in A
- âŠ