5,352 research outputs found

    Green fluorescent diamidines as diagnostic probes for trypanosomes

    Get PDF
    LED fluorescence microscopy offers potential benefits to the diagnosis of human African trypanosomiasis, as well as to other aspects of diseases management, such as detection of drug resistant strains. To advance such approaches reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we report a series of novel green fluorescent diamidines and their suitability as probes to stain trypanosomes

    Absorption and scattering by interstellar dust: XMM-Newton observation of Cyg X-2

    Full text link
    We present results of the XMM-Newton observation on the bright X-ray binary Cyg X-2. In our analysis we focus upon the absorption and scattering of the X-ray emission by interstellar dust. The scattering halo around Cyg X-2, observed with the CCD detector EPIC-pn, is well detected up to ~7 arcmin and contributes ~5-7% to the total source emission at 1 keV, depending on the dust size distribution model considered. For the first time spatially resolved spectroscopy of a scattering halo is performed. In the halo spectrum we clearly detect the signature of the interstellar dust elements: O, Mg, and Si. The spectral modeling of the halo shows a major contribution of silicates (olivine and pyroxene). The spatial analysis of the halo shows that the dust is smoothly distributed toward Cyg X-2 at least for ~60% of the path to the source. Within the instrumental limits, the data do not show preference for a specific dust size distribution; namely the Mathis, Rumpl & Nordsieck (1977) or the Weingartner & Draine (2001) model. We used the Mie theory to compute the differential scattering cross section. The RGS data were used to investigate the ISM absorption, in particular the region of the oxygen edge. Combining the RGS results with the information on dust grains provided by the EPIC-pn spectrum of the halo we estimate a column density for dust absorption by oxygen, provided that it is locked in silicate grains (abridged).Comment: 15 pages, 12 figures. Accepted for publication in Astronomy and Astrophysic

    Le destin des manuscrits catholiques d’Isaac Papin après sa mort : convoitise et mystère autour de la dépouille intellectuelle d’un sympathisant janséniste

    Get PDF
    Isaac Papin (1657-1709), né calviniste, est passé à la postérité pour sa conversion au catholicisme. Après avoir été le fer de lance des pajonistes au sein du Refuge, il se convertit entre les mains de Bossuet, en 1690. La seconde partie de sa vie est beaucoup moins connue. Deux dossiers de la collection Port-Royal d’Utrecht permettent de lever le voile sur un aspect totalement inédit de son parcours : ses relations avec le milieu janséniste. Si les traces sont peu nombreuses, ses relations avec Pasquier Quesnel sont attestées. Après sa mort, ses manuscrits sont convoités et finalement récupérés par les jansénistes. Les textes qu’ils contiennent sont publiés par les soins de Quesnel, en 1713, sous le titre Les deux voies opposées en matière de religion

    Extinction Curves, Distances, and Clumpiness of Diffuse Interstellar Dust Clouds

    Get PDF
    We present CCD photometry in UBVRI of several thousand Galactic field stars in four large (>1 degree^2) regions centered on diffuse interstellar dust clouds, commonly referred to as ``cirrus'' clouds (with optical depth A_V less than unity). Our goal in studying these stars is to investigate the properties of the cirrus clouds. A comparison of the observed stellar surface density between on-cloud and off-cloud regions as a function of apparent magnitude in each of the five bands effectively yields a measure of the extinction through each cloud. For two of the cirrus clouds, this method is used to derive UBVRI star counts-based extinction curves, and U-band counts are used to place constraints on the cloud distance. The color distribution of stars and their location in (U-B, B-V) and (B-V, V-I) color-color space are analyzed in order to determine the amount of selective extinction (reddening) caused by the cirrus. The color excesses, A_lambda-A_V, derived from stellar color histogram offsets for the four clouds, are better fit by a reddening law that rises steeply towards short wavelengths [R_V==A_V/E(B-V)<=2] than by the standard law (R_V=3.1). This may be indicative of a higher-than-average abundance of small dust grains relative to larger grains in diffuse cirrus clouds. The shape of the counts-based effective extinction curve and a comparison of different estimates of the dust optical depth (extinction optical depth derived from background star counts/colors; emission optical depth derived from far infrared measurements), are used to measure the degree of clumpiness in clouds. The set of techniques explored in this paper can be readily adapted to the Sloan Digital Sky Survey data set in order to carry out a systematic, large-scale study of cirrus clouds.Comment: 22 pages, 13 figures (postscript, gif, jpg). Accepted for publication in the Astronomical Journal, scheduled for the May 1999 issue. Full resolution postscript versions of all figures are available at http://www.ucolick.org/~arpad

    UV-driven chemistry in simulations of the interstellar medium. I. Post-processed chemistry with the Meudon PDR code

    Full text link
    Our main purpose is to estimate the effect of assuming uniform density on the line-of-sight in PDR chemistry models, compared to a more realistic distribution for which total gas densities may well vary by several orders of magnitude. A secondary goal of this paper is to estimate the amount of molecular hydrogen which is not properly traced by the CO (J = 1 -> 0) line, the so-called "dark molecular gas". We use results from a magnetohydrodynamical (MHD) simulation as a model for the density structures found in a turbulent diffuse ISM with no star-formation activity. The Meudon PDR code is then applied to a number of lines of sight through this model, to derive their chemical structures. It is found that, compared to the uniform density assumption, maximal chemical abundances for H2, CO, CH and CN are increased by a factor 2 to 4 when taking into account density fluctuations on the line of sight. The correlations between column densities of CO, CH and CN with respect to those of H2 are also found to be in better overall agreement with observations. For instance, at N(H2) > 2.10^{20} cm-2, while observations suggest that d[log N(CO)]=d[log N(H2)] = 3.07 +/- 0.73, we find d[log N(CO)]=d[log N(H2)] =14 when assuming uniform density, and d[log N(CO)]=d[log N(H2)] = 5.2 when including density fluctuations.Comment: 14 pages, 16 figures, accepted for publication in Astronomy & Astrophysic

    Diffuse Galactic light at high Galactic latitude: nature and interpretation

    Full text link
    The hypothesis of an extended red emission (ERE) in diffuse Galactic light (DGL) has been put forward in 1998 by Gordon, Witt and Friedmann who found that scattered starlight was not enough to explain the amount of DGL in the R band, in some high Galactic latitude directions. This paper re-investigates, for high Galactic latitudes, the brightnesses and colours of DGL, integrated star and galaxy light (ISGL), and of the total extrasolar light (ISGL+DGL) measured by Pioneer. Under the traditional assumption that DGL is forward scattering of background starlight by interstellar dust on the line of sight, ISGL and Pioneer have very close colours, as it is found by Gordon, Witt and Friedmann. Pioneer observations at high |b| thus accept an alternative and simple interpretation, with no involvement of ERE in DGL.Comment: 9 pages, 5 figure

    The envelope of IRC+10216 reflecting the galactic light: UBV surface brightness photometry and interpretation

    Full text link
    We present and analyse new optical images of the dust envelope surrounding the high mass-loss carbon star IRC+10216. This envelope is seen due to external illumination by galactic light. Intensity profiles and colors of the nebula were obtained in the UBV bandpasses. The data are compared with the results of a radiative transfer model calculating multiple scattering of interstellar field photons by dust grains with a single radius. The data show that the observed radial shape of the nebula, especially its half maximum radius, does not depend on wavelength (within experimental errors), suggesting that grains scatter in the grey regime, etc, etc (this abstract has been shortened)Comment: accepted by A

    Optical Spectroscopy of Galactic Cirrus Clouds: Extended Red Emission in the Diffuse Interstellar Medium

    Get PDF
    We present initial results from the first optical spectroscopic survey of high latitude Galactic cirrus clouds. The observed shape of the cirrus spectrum does not agree with that of scattered ambient Galactic starlight. This mismatch can be explained by the presence of Extended Red Emission (ERE) in the diffuse interstellar medium, as found in many other astronomical objects, probably caused by photoluminescence of hydrocarbons. The integrated ERE intensity, I_ERE \approx 1.2 x 10^{-5} erg s^{-1} cm^{-2} sr^{-1}, is roughly a third of the scattered light intensity, consistent with recent color measurements of diffuse Galactic light. The peak of the cirrus ERE (lambda_{0} \sim 6000 AA) is shifted towards short (bluer) wavelengths compared to the ERE in sources excited by intense ultraviolet radiation, such as HII regions (lambda_{0} sim 8000 AA); such a trend is seen in laboratory experiments on hydrogenated amorphous carbon films.Comment: 7 pages, 2 figures. Accepted for publication in ApJ Letter

    Radiative transfer on hierarchial grids

    Full text link
    We present new methods for radiative transfer on hierarchial grids. We develop a new method for calculating the scattered flux that employs the grid structure to speed up the computation. We describe a novel subiteration algorithm that can be used to accelerate calculations with strong dust temperature self-coupling. We compute two test models, a molecular cloud and a circumstellar disc, and compare the accuracy and speed of the new algorithms against existing methods. An adaptive model of the molecular cloud with less than 8 % of the cells in the uniform grid produced results in good agreement with the full resolution model. The relative RMS error of the surface brightness <4 % at all wavelengths, and in regions of high column density the relative RMS error was only 10^{-4}. Computation with the adaptive model was faster by a factor of ~5. The new method for calculating the scattered flux is faster by a factor of ~4 in large models with a deep hierarchy structure, when images of the scattered light are computed towards several observing directions. The efficiency of the subiteration algorithm is highly dependent on the details of the model. In the circumstellar disc test the speed-up was a factor of two, but much larger gains are possible. The algorithm is expected to be most beneficial in models where a large number of small, dense regions are embedded in an environment with a lower mean density.Comment: Accepted to A&A; 13 pages, 8 figures; (v2: minor typos corrected

    A close look into the carbon disk at the core of the planetary nebula CPD-568032

    Get PDF
    We present high spatial resolution observations of the dusty core of the Planetary Nebula with Wolf-Rayet central star CPD-568032. These observations were taken with the mid-infrared interferometer VLTI/MIDI in imaging mode providing a typical 300 mas resolution and in interferometric mode using UT2-UT3 47m baseline providing a typical spatial resolution of 20 mas. The visible HST images exhibit a complex multilobal geometry dominated by faint lobes. The farthest structures are located at 7" from the star. The mid-IR environment of CPD-568032 is dominated by a compact source, barely resolved by a single UT telescope in a 8.7 micron filter. The infrared core is almost fully resolved with the three 40-45m projected baselines ranging from -5 to 51 degree but smooth oscillating fringes at low level have been detected in spectrally dispersed visibilities. This clear signal is interpreted in terms of a ring structure which would define the bright inner rim of the equatorial disk. Geometric models allowed us to derive the main geometrical parameters of the disk. For instance, a reasonably good fit is reached with an achromatic and elliptical truncated Gaussian with a radius of 97+/-11 AU, an inclination of 28+/-7 degree and a PA for the major axis at 345+/-7 degree. Furthermore, we performed some radiative transfer modeling aimed at further constraining the geometry and mass content of the disk, by taking into account the MIDI dispersed visibilities, spectra, and the large aperture SED of the source. These models show that the disk is mostly optically thin in the N band and highly flared.Comment: Paper accepted in A&
    corecore