133 research outputs found

    \emph{Ab initio} study of (100) diamond surface spins

    Full text link
    Unpaired electronic spins at diamond surfaces are ubiquitous and can lead to excess magnetic noise. They have been observed in several studies to date, but their exact chemical nature is still unknown. We propose a simple model to explain the existence and chemical stability of surface spins associated with the sp3sp^3 dangling bond on the (100) diamond surface using density functional theory. We find that the (111) facet, which is naturally generated at a step edge of (100) crystalline diamond surface, can sterically protect a spinful defect. Our study reveals a mechanism for annihilation of these surface spins upon annealing, consistent with recent experimental results. We also demonstrate that the Fermi-contact term in the hyperfine coupling is not negligible between the surface spins and the surrounding nuclear spins, and thus \textit{ab initio} simulation can be used to devise a sensing protocol where the surface spins act as reporter spins to sense nuclear spins on the surface.Comment: 11 figure

    Identifying candidate hosts for quantum defects via data mining

    Full text link
    Atom-like defects in solid-state hosts are promising candidates for the development of quantum information systems, but despite their importance, the host substrate/defect combinations currently under study have almost exclusively been found serendipitously. Here we systematically evaluate the suitability of host materials by applying a combined four-stage data mining and manual screening process to all entries in the Materials Project database, with literature-based experimental confirmation of band gap values. We identify 580 viable host substrates for quantum defect introduction and use in quantum information systems. While this constitutes a significant increase in the number of known and potentially viable material systems, it nonetheless represents a significant (99.54%) reduction from the total number of known inorganic phases, and the application of additional selection criteria for specific applications will reduce their number even further. The screening principles outlined may easily be applied to previously unrealized phases and other technologically important materials systems.Comment: Currently under consideration at npj Computational Material

    Neutral Silicon Vacancy Centers in Diamond via Photoactivated Itinerant Carriers

    Full text link
    Neutral silicon vacancy (SiV0) centers in diamond are promising candidates for quantum network applications because of their exceptional optical properties and spin coherence. However, the stabilization of SiV0 centers requires careful Fermi level engineering of the diamond host material, making further technological development challenging. Here, we show that SiV0 centers can be efficiently stabilized by photoactivated itinerant carriers. Even in this nonequilibrium configuration, the resulting SiV0 centers are stable enough to allow for resonant optical excitation and optically detected magnetic resonance. Our results pave the way for on-demand generation of SiV0 centers as well as other emerging quantum defects in diamond

    Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond

    Full text link
    Integrating atomic quantum memories based on color centers in diamond with on-chip photonic devices would enable entanglement distribution over long distances. However, efforts towards integration have been challenging because color centers can be highly sensitive to their environment, and their properties degrade in nanofabricated structures. Here, we describe a heterogeneously integrated, on-chip, III-V diamond platform designed for neutral silicon vacancy (SiV0) centers in diamond that circumvents the need for etching the diamond substrate. Through evanescent coupling to SiV0 centers near the surface of diamond, the platform will enable Purcell enhancement of SiV0 emission and efficient frequency conversion to the telecommunication C-band. The proposed structures can be realized with readily available fabrication techniques

    Charge State Dynamics and Optically Detected Electron Spin Resonance Contrast of Shallow Nitrogen-Vacancy Centers in Diamond

    Full text link
    Nitrogen-vacancy (NV) centers in diamond can be used for nanoscale sensing with atomic resolution and sensitivity; however, it has been observed that their properties degrade as they approach the diamond surface. Here we report that in addition to degraded spin coherence, NV centers within nanometers of the surface can also exhibit decreased fluorescence contrast for optically detected electron spin resonance (OD-ESR). We demonstrate that this decreased OD-ESR contrast arises from charge state dynamics of the NV center, and that it is strongly surface-dependent, indicating that surface engineering will be critical for nanoscale sensing applications based on color centers in diamond

    Nanoscale covariance magnetometry with diamond quantum sensors

    Full text link
    Nitrogen vacancy (NV) centers in diamond are atom-scale defects with long spin coherence times that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field projection at a single point is measured by averaging many sequential measurements with a single NV center, or the magnetic field distribution is reconstructed by taking a spatial average over an ensemble of many NV centers. In averaging over many single-NV center experiments, both techniques discard information. Here we propose and implement a new sensing modality, whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We analytically derive the measurable two-point correlator in the presence of environmental noise, quantum projection noise, and readout noise. We show that optimizing the readout noise is critical for measuring correlations, and we experimentally demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers. We also implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources, and demonstrate that independent control of two NV centers can be used to measure the temporal structure of correlations. Our covariance magnetometry scheme has numerous applications in studying spatiotemporal structure factors and dynamics, and opens a new frontier in nanoscale sensing

    Hybrid Integration of GaP Photonic Crystal Cavities with Silicon-Vacancy Centers in Diamond by Stamp-Transfer

    Full text link
    Optically addressable solid-state defects are emerging as one of the most promising qubit platforms for quantum networks. Maximizing photon-defect interaction by nanophotonic cavity coupling is key to network efficiency. We demonstrate fabrication of gallium phosphide 1-D photonic crystal waveguide cavities on a silicon oxide carrier and subsequent integration with implanted silicon-vacancy (SiV) centers in diamond using a stamp-transfer technique. The stamping process avoids diamond etching and allows fine-tuning of the cavities prior to integration. After transfer to diamond, we measure cavity quality factors (QQ) of up to 8900 and perform resonant excitation of single SiV centers coupled to these cavities. For a cavity with QQ of 4100, we observe a three-fold lifetime reduction on-resonance, corresponding to a maximum potential cooperativity of C=2C = 2. These results indicate promise for high photon-defect interaction in a platform which avoids fabrication of the quantum defect host crystal

    Narrow optical linewidths in erbium implanted in TiO2_2

    Full text link
    Atomic and atom-like defects in the solid-state are widely explored for quantum computers, networks and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals. Here, we demonstrate that Er3+^{3+} ions can be introduced via ion implantation into TiO2_2, a host crystal that has not been studied extensively for rare earth ions and has a low natural abundance of nuclear spins. We observe efficient incorporation of the implanted Er3+^{3+} into the Ti4+^{4+} site (40% yield), and measure narrow inhomogeneous spin and optical linewidths (20 and 460 MHz, respectively) that are comparable to bulk-doped crystalline hosts for Er3+^{3+}. This work demonstrates that ion implantation is a viable path to studying rare earth ions in new hosts, and is a significant step towards realizing individually addressed rare earth ions with long spin coherence times for quantum technologies
    corecore