32 research outputs found

    The developmental and acute phases of insulin-induced laminitis involve minimal metalloproteinase activity

    Get PDF
    Metalloproteinases have been implicated in the pathogenesis of equine laminitis and other inflammatory conditions, through their role in the degradation and remodelling of the extracellular matrix environment. Matrix metalloproteinases (MMPs) and their inhibitors are present in normal equine lamellae, with increased secretion and activation of some metalloproteinases reported in horses with laminitis associated with systemic inflammation. It is unknown whether these enzymes are involved in insulin-induced laminitis, which occurs without overt systemic inflammation. In this study, gene expression of MMP-2, MMP-9, MT1-MMP, ADAMTS-4 and TIMP-3 was determined in the lamellar tissue of normal control horses (n = 4) and horses that developed laminitis after 48 h of induced hyperinsulinaemia (n = 4), using quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Protein concentrations of MMP-2 and MMP-9 were also examined using gelatin zymography in horses subject to prolonged hyperinsulinaemia for 6 h (n = 4), 12 h (n = 4), 24 h (n = 4) and 48 h (n = 4), and in normal control horses (n = 4). The only change in gene expression observed was an upregulation of MMP-9 (p < 0.05) in horses that developed insulin-induced laminitis (48 h). Zymographical analysis showed an increase (p < 0.05) in pro MMP-9 during the acute phase of laminitis (48 h), whereas pro MMP-2 was present in similar concentration in the tissue of all horses. Thus, MMP-2, MT1-MMP, TIMP-3 and ADAMTS-4 do not appear to play a significant role in the pathogenesis of insulin-induced laminitis. The increased expression of MMP-9 may be associated with the infiltration of inflammatory leukocytes, or may be a direct result of hyperinsulinaemia. The exact role of MMP-9 in basement membrane degradation in laminitis is uncertain as it appears to be present largely in the inactive form

    A glucagon-like peptide-1 receptor antagonist reduces the insulin response to a glycemic meal in ponies

    No full text
    High plasma concentrations of insulin can cause acute laminitis. Ponies and horses with insulin dysregulation (ID) exhibit marked hyperinsulinemia in response to dietary hydrolyzable carbohydrates. Glucagon-like peptide-1 (GLP-1), an incretin hormone released from the gastrointestinal tract, enhances insulin release, and is increased postprandially in ponies with ID. The aim of this study was to determine whether blocking the GLP-1 receptor reduces the insulin response to a high glycemic meal. Five adult ponies were adapted to a cereal meal and then given two feed challenges 24 h apart of a meal containing 3 g/kg BW micronized maize. Using a randomized cross-over design all ponies received both treatments, where one of the feeds was preceded by the IV administration of a GLP-1 receptor blocking peptide, Exendin-3 (9-39) amide (80 µg/ kg), and the other feed by a sham treatment of peptide diluent only. Blood samples were taken before feeding and peptide administration, and then at 30-min intervals via a jugular catheter for 6 h for the measurement of insulin, glucose, and active GLP-1. The peptide and meal challenge caused no adverse effects, and the change in plasma glucose in response to the meal was not affected (P = 0.36) by treatment: peak concentration 9.24 ± 1.22 and 9.14 ± 1.08 mmol/L without and with the antagonist, respectively. Similarly, there was no effect (P = 0.35) on plasma active GLP-1 concentrations: peak concentration 14.3 ± 1.36 pM and 13.7 ± 1.97 pM without and with the antagonist, respectively. However, the antagonist caused a significant decrease in the area under the curve for insulin (P = 0.04), and weak evidence (P = 0.06) of a reduction in peak insulin concentration (456 ± 147 μIU/mL and 370 ± 146 μIU/mL without and with the antagonist, respectively). The lower overall insulin response to the maize meal after treatment with the antagonist demonstrates that blocking the GLP-1 receptor partially reduced insulin production in response to a high starch, high glycemic index, diet. Using a different methodological approach to published studies, this study also confirmed that GLP-1 does contribute to the excessive insulin production in ponies with ID.</p

    An investigation of the equine epidermal growth factor system during hyperinsulinemic laminitis

    No full text
    Equine laminitis is a disease of the digital epidermal lamellae typified by epidermal cell proliferation and structural collapse. Most commonly the disease is caused by hyperinsulinemia, although the pathogenesis is incompletely understood. Insulin can activate the epidermal growth factor (EGF) system in other species and the present study tested the hypothesis that upregulation of EGF receptor (EGFR) signalling is a key factor in laminitis pathophysiology. First, we examined lamellar tissue from healthy Standardbred horses and those with induced hyperinsulinemia and laminitis for EGFR distribution and quantity using immunostaining and gene expression, respectively. Phosphorylation of EGFR was also quantified. Next, plasma EGF concentrations were compared in healthy and insulin-infused horses, and in healthy and insulin-dysregulated ponies before and after feeding. The EGFR were localised to the secondary epidermal lamellae, with stronger staining in parabasal, rather than basal, cells. No change in EGFR gene expression occurred with laminitis, although the receptor showed some phosphorylation. No difference was seen in EGF concentrations in horses, but in insulin-dysregulated ponies mean, post-prandial EGF concentrations were almost three times higher than in healthy ponies (274 ± 90 vs. 97.4 ± 20.9 pg/mL, P = 0.05). Although the EGFR does not appear to play a major pathogenic role in hyperinsulinemic laminitis, the significance of increased EGF in insulin-dysregulated ponies deserves further investigation

    Hyperinsulinemic laminitis

    No full text
    Laminitis occurring in association with hyperinsulinemia is frequently encountered in today's equine population. New evidence suggests that hyperinsulinemia is the direct cause of this form of laminitis, rather than insulin resistance per se. The mechanism by which elevated serum insulin concentrations result in lamellar dysfunction is currently under investigation by many researchers and the use of a new insulin infusion model for investigating the pathogenesis of insulin-associated laminitis will doubtless enhance progress in this field of research. By focusing on the metabolic and vascular actions of insulin in the lamellar microenvironment, our research group is trying to gain an insight into the pathophysiological processes involved in this complex problem, in order to better understand the disease. Copyright © 2010 Saunders, An Imprint of Elsevie

    The cresty neck score is an independent predictor of insulin dysregulation in ponies

    No full text
    Generalized obesity, regional adiposity, hyperinsulinemia and hypertriglyceridemia are all potential indicators of equine metabolic syndrome (EMS). This study aimed to assess the relationship between morphometric measurements of body condition and metabolic hormone concentrations in ponies, with and without a neck crest or generalised obesity. Twenty-six ponies were assigned a body condition score (BCS) and cresty neck score (CNS). Height, girth, and neck measurements were taken. An oral glucose test (OGT; 0.75g dextrose/kg BW) was performed and blood samples collected prior to and 2 hours post dosing. Basal blood samples were analysed for blood glucose, serum insulin, triglyceride and leptin, and plasma HMW adiponectin concentrations. Post-prandial samples were analysed for serum insulin concentration. The ponies were grouped as having a) a normal to fleshy body status (BCS ≤7 and CNS ≤2; n = 10); b) having a high CNS, but without generalised obesity (BCS ≤7 and CNS ≥3; n = 11), or c) being obese (BCS ≥8 and CNS ≥1; n = 5). Responses to the OGT indicated that both normal and insulin-dysregulated ponies were included in the cohort. Post-prandial serum insulin was positively associated with CNS (

    Associations between feeding and glucagon-like peptide-2 in healthy ponies

    No full text
    Background: Gastrointestinal peptides, such as glucagon-like peptide-2 (GLP-2), could play a direct role in the development of equine hyperinsulinaemia. Objectives: To describe the secretory pattern of endogenous GLP-2 over 24 h in healthy ponies and determine whether oral administration of a synthetic GLP-2 peptide increases blood glucose or insulin responses to feeding. Study Design: A cohort study followed by a randomised, controlled, cross-over study. Methods: In the cohort study, blood samples were collected every 2 h for 24 h in seven healthy ponies and plasma [GLP-2] was measured. In the cross-over study, 75 μg/kg bodyweight of synthetic GLP-2, or carrier only, was orally administered to 10 ponies twice daily for 10 days. The area under the curve (AUC0–3h) of post-prandial blood glucose and insulin were determined before and after each treatment. Results: Endogenous [GLP-2] ranged from 0–3h was larger (P = 0.01) than before treatment. The peptide decreased (7%; P = 0.003) peak blood glucose responses to feeding from 5.33 ± 0.45 mmol/L to 5.0 ± 0.21 mmol/L, but not AUC0–3h (P = 0.07). There was no effect on insulin secretion. Main Limitations: The study only included healthy ponies and administration of a single dose of GLP-2. Conclusions: The diurnal pattern of GLP-2 secretion in ponies was similar to other species with no apparent effect of daylight. Although GLP-2 treatment did not increase post-prandial glucose or insulin responses to eating, studies using alternative dosing strategies for GLP-2 are required.</p

    Differential proteomic expression of equine cardiac and lamellar tissue during insulin-induced laminitis

    No full text
    Endocrinopathic laminitis is pathologically similar to the multi-organ dysfunction and peripheral neuropathy found in human patients with metabolic syndrome. Similarly, endocrinopathic laminitis has been shown to partially result from vascular dysfunction. However, despite extensive research, the pathogenesis of this disease is not well elucidated and laminitis remains without an effective treatment. Here, we sought to identify novel proteins and pathways underlying the development of equine endocrinopathic laminitis. Healthy Standardbred horses (n = 4/group) were either given an electrolyte infusion, or a 48-h euglycemic-hyperinsulinemic clamp. Cardiac and lamellar tissues were analyzed by mass spectrometry (FDR = 0.05). All hyperinsulinemic horses developed laminitis despite being previously healthy. We identified 514 and 709 unique proteins in the cardiac and lamellar proteomes, respectively. In the lamellar tissue, we identified 14 proteins for which their abundance was significantly increased and 13 proteins which were significantly decreased in the hyperinsulinemic group as compared to controls. These results were confirmed via real-time reverse-transcriptase PCR. A STRING analysis of protein-protein interactions revealed that these increased proteins were primarily involved in coagulation and complement cascades, platelet activity, and ribosomal function, while decreased proteins were involved in focal adhesions, spliceosomes, and cell-cell matrices. Novel significant differentially expressed proteins associated with hyperinsulinemia-induced laminitis include talin−1, vinculin, cadherin-13, fibrinogen, alpha-2-macroglobulin, and heat shock protein 90. In contrast, no proteins were found to be significantly differentially expressed in the heart of hyperinsulinemic horses compared to controls. Together, these data indicate that while hyperinsulinemia induced, in part, microvascular damage, complement activation, and ribosomal dysfunction in the lamellae, a similar effect was not seen in the heart. In brief, this proteomic investigation of a unique equine model of hyperinsulinemia identified novel proteins and signaling pathways, which may lead to the discovery of molecular biomarkers and/or therapeutic targets for endocrinopathic laminitis

    Insulin and incretin responses to grazing in insulin-dysregulated and healthy ponies

    No full text
    Background: Supraphysiological insulin and incretin responses to a cereal-based diet have been described in horses and ponies with insulin dysregulation (ID). However, the hormonal responses to grazing have not yet been described. Objectives: To determine if there is a difference in the insulin and incretin responses to grazing pasture between insulin-dysregulated and healthy ponies. Animals: A cohort of 16 ponies comprising 5 with normal insulin regulation (NIR), 6 with moderate ID (MID), and 5 with severe ID (SID). Methods: In this case-control study, an oral glucose test (OGT) was used to determine the insulin responsiveness of each pony to PO carbohydrate before grazing pasture (4 hours) for 3 consecutive days. Serial blood samples collected during grazing were analyzed for glucose, insulin, glucose-dependent insulinotropic peptide (GIP) and active glucagon-like peptide-1 (aGLP-1), and compared among pony groups and day of pasture access. Results: The area under the insulin curve when grazing increased with ID severity (

    Equine glucagon-like peptide-1 receptor physiology

    No full text
    Background Equine metabolic syndrome (EMS) is associated with insulin dysregulation, which often manifests as post-prandial hyperinsulinemia. Circulating concentrations of the incretin hormone, glucagon-like peptide-1 (GLP-1) correlate with an increased insulin response to carbohydrate intake in animals with EMS. However, little is known about the equine GLP-1 receptor (eGLP-1R), or whether GLP-1 concentrations can be manipulated. The objectives were to determine (1) the tissue localisation of the eGLP-1R, (2) the GLP-1 secretory capacity of equine intestine in response to glucose and (3) whether GLP-1 stimulated insulin secretion from isolated pancreatic islets can be attenuated. Methods Archived and abattoir-sourced tissues from healthy horses were used. Reverse transcriptase PCR was used to determine the tissue distribution of the eGLP-1R gene, with immunohistochemical confirmation of its pancreatic location. The GLP-1 secretion from intestinal explants in response to 4 and 12 mM glucose was quantified in vitro. Pancreatic islets were freshly isolated to assess the insulin secretory response to GLP-1 agonism and antagonism in vitro, using concentration-response experiments. Results The eGLP-1R gene is widely distributed in horses (pancreas, heart, liver, kidney, duodenum, digital lamellae, tongue and gluteal skeletal muscle). Within the pancreas the eGLP-1R was immunolocalised to the pancreatic islets. Insulin secretion from pancreatic islets was concentration-dependent with human GLP-1, but not the synthetic analogue exendin-4. The GLP-1R antagonist exendin 9-39 (1 nM) reduced (P = 0.08) insulin secretion by 27%. Discussion The distribution of the eGLP-1R across a range of tissues indicates that it may have functions beyond insulin release. The ability to reduce insulin secretion, and therefore hyperinsulinemia, through eGLP-1R antagonism is a promising and novel approach to managing equine insulin dysregulation
    corecore