220 research outputs found

    Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders

    Get PDF
    Magnetic resonance spectroscopy (MRS) of children with or without neurometabolic disease is used for the first time for quantitative assessment of brain tissue lactate signals, to elaborate on previous suggestions of MRS-detected lactate as a marker of mitochondrial disease. Multivoxel MRS of a transverse plane of brain tissue cranial to the ventricles was performed in 88 children suspected of having neurometabolic disease, divided into 'definite' (n = 17, >= 1 major criteria), 'probable' (n = 10, >= 2 minor criteria), 'possible' (n = 17, 1 minor criterion) and 'unlikely' mitochondrial disease (n = 44, none of the criteria). Lactate levels, expressed in standardized arbitrary units or relative to creatine, were derived from summed signals from all voxels. Ten 'unlikely' children with a normal neurological exam served as the MRS reference subgroup. For 61 of 88 children, CSF lactate values were obtained. MRS lactate level (> 12 arbitrary units) and the lactate-to-creatine ratio (L/Cr > 0.22) differed significantly between the definite and the unlikely group (p = 0.015 and p = 0.001, respectively). MRS L/Cr also differentiated between the probable and the MRS reference subgroup (p = 0.03). No significant group differences were found for CSF lactate. MRS-quantified brain tissue lactate levels can serve as diagnostic marker for identifying mitochondrial disease in children. MRS-detected brain tissue lactate levels can be quantified. MRS lactate and lactate/Cr are increased in children with mitochondrial disease. CSF lactate is less suitable as marker of mitochondrial disease

    Early onset ataxia with comorbid myoclonus and epilepsy:A disease spectrum with shared molecular pathways and cortico-thalamo-cerebellar network involvement

    Get PDF
    OBJECTIVES: Early onset ataxia (EOA) concerns a heterogeneous disease group, often presenting with other comorbid phenotypes such as myoclonus and epilepsy. Due to genetic and phenotypic heterogeneity, it can be difficult to identify the underlying gene defect from the clinical symptoms. The pathological mechanisms underlying comorbid EOA phenotypes remain largely unknown. The aim of this study is to investigate the key pathological mechanisms in EOA with myoclonus and/or epilepsy.METHODS: For 154 EOA-genes we investigated (1) the associated phenotype (2) reported anatomical neuroimaging abnormalities, and (3) functionally enriched biological pathways through in silico analysis. We assessed the validity of our in silico results by outcome comparison to a clinical EOA-cohort (80 patients, 31 genes).RESULTS: EOA associated gene mutations cause a spectrum of disorders, including myoclonic and epileptic phenotypes. Cerebellar imaging abnormalities were observed in 73-86% (cohort and in silico respectively) of EOA-genes independently of phenotypic comorbidity. EOA phenotypes with comorbid myoclonus and myoclonus/epilepsy were specifically associated with abnormalities in the cerebello-thalamo-cortical network. EOA, myoclonus and epilepsy genes shared enriched pathways involved in neurotransmission and neurodevelopment both in the in silico and clinical genes. EOA gene subgroups with myoclonus and epilepsy showed specific enrichment for lysosomal and lipid processes.CONCLUSIONS: The investigated EOA phenotypes revealed predominantly cerebellar abnormalities, with thalamo-cortical abnormalities in the mixed phenotypes, suggesting anatomical network involvement in EOA pathogenesis. The studied phenotypes exhibit a shared biomolecular pathogenesis, with some specific phenotype-dependent pathways. Mutations in EOA, epilepsy and myoclonus associated genes can all cause heterogeneous ataxia phenotypes, which supports exome sequencing with a movement disorder panel over conventional single gene panel testing in the clinical setting

    Ketogenic Diet in Refractory Childhood Epilepsy:Starting With a Liquid Formulation in an Outpatient Setting

    Get PDF
    Background: Ketogenic diet in children with epilepsy has a considerable impact on daily life and is usually adopted for at least 3 months. Our aim was to evaluate whether the introduction of an all-liquid ketogenic diet in an outpatient setting is feasible, and if an earlier assessment of its efficacy can be achieved. Methods: The authors conducted a prospective, observational study in a consecutive group of children with refractory epilepsy aged 2 to 14 years indicated for ketogenic diet. Ketogenic diet was started as an all-liquid formulation of the classical ketogenic diet, KetoCal 4:1 LQ, taken orally or by tube. After 6 weeks, the liquid diet was converted into solid meals. The primary outcome parameter was time-to-response (>50% seizure reduction). Secondary outcome parameters were time to achieve stable ketosis, the number of children showing a positive response, and the retention rate at 26 weeks. Results: Sixteen children were included. Four of them responded well with respect to seizure frequency, the median time-to-response was 14 days (range 7-28 days). The mean time to achieve stable ketosis was 7 days. The retention rate at 26 weeks was 50%. Of the 8 children who started this protocol orally fed, 6 completed it without requiring a nasogastric tube. Conclusions: Introduction of ketogenic diet with a liquid formulation can be accomplished in orally fed children without major complications. It allowed for fast and stable ketosis

    Challenges in Clinicogenetic Correlations:One Phenotype – Many Genes

    Get PDF
    Background: In the field of movement disorders, what you see (phenotype) is seldom what you get (genotype). Whereas 1 phenotype was previously associated to 1 gene, the advent of next-generation sequencing (NGS) has facilitated an exponential increase in disease-causing genes and genotype-phenotype correlations, and the "one-phenotype-many-genes" paradigm has become prominent.Objectives: To highlight the "one-phenotype-many-genes" paradigm by discussing the main challenges, perspectives on how to address them, and future directions.Methods: We performed a scoping review of the various aspects involved in identifying the underlying molecular cause of a movement disorder phenotype.Results: The notable challenges are (1) the lack of gold standards, overlap in clinical spectrum of different movement disorders, and variability in the interpretation of classification systems; (2) selecting which patients benefit from genetic tests and the choice of genetic testing; (3) problems in the variant interpretation guidelines; (4) the filtering of variants associated with disease; and (5) the lack of standardized, complete, and up-to-date gene lists. Perspectives to address these include (1) deep phenotyping and genotype-phenotype integration, (2) adherence to phenotype-specific diagnostic algorithms, (3) implementation of current and complementary bioinformatic tools, (4) a clinical-molecular diagnosis through close collaboration between clinicians and genetic laboratories, and (5) ongoing curation of gene lists and periodic reanalysis of genetic sequencing data.Conclusions: Despite the rapidly emerging possibilities of NGS, there are still many steps to take to improve the genetic diagnostic yield. Future directions, including post-NGS phenotyping and cohort analyses enriched by genotype-phenotype integration and gene networks, ought to be pursued to accelerate identification of disease-causing genes and further improve our understanding of disease biology

    Ultrasonography of the Adrenal Gland

    Get PDF
    With appropriate techniques and using liver, spleen or kidney as an acoustic window, normal adrenal gland and adrenal lesions can be delineated by ultrasonography. The right adrenal gland is usually evaluated by transverse oblique scans and coronal scans, respectively, through the anterior and middle axillary line, while the left adrenal gland is investigated by an oblique coronal scan mainly through the posterior axillary line. For adrenal lesions, ultrasonography has a sensitivity of 74–97%, a specificity of 61–96%, and an accuracy of 70–97%. The diagnostic accuracy depends on the scanning technique and expertise of the operator, the body status of the patient, the size and functional status of the lesion, and the ultrasonographic quality. Small adrenal nodules, ileus, obesity, fatty liver, and large body status account for most of the reasons for decreased accuracy. Small adrenal nodules less than 3 cm in diameter mainly comprise functioning cortical adenomas, nonfunctioning cortical adenomas, nodular hyperplasia, and metastases. Most small adrenal masses are homogeneous and hypoechoic, and the echo patterns are nonspecific. Large adrenal masses greater than 3 cm in diameter mainly include primary adrenocortical carcinoma, lymphoma, metastasis, lymphoma, and pheochromocytoma. The echogenicity of a large adrenal mass may be hyperechoic and heterogeneous because of the higher incidence of necrosis and hemorrhage. Other uncommon adrenal masses are myelolipoma, hematoma, granulomatous lesions, hemangioma, and adrenal cysts of various origins. The differential diagnoses of a hyperechoic adrenal mass include neuroblastoma, myelolipoma, and tumor with central necrosis or heterogeneity. Calcification is encountered in both benign and malignant processes. It is sometimes difficult to differentiate benign adrenal masses from malignant lesions. Dynamic computed tomography, magnetic resonance imaging, and positron emission tomography play critical complementary roles in such an instance

    Dopaminergic and serotonergic alterations in plasma in three groups of dystonia patients

    Get PDF
    Introduction: In dystonia, dopaminergic alterations are considered to be responsible for the motor symptoms. Recent attention for the highly prevalent non-motor symptoms suggest also a role for serotonin in the pathophysiology. In this study we investigated the dopaminergic, serotonergic and noradrenergic metabolism in blood samples of dystonia patients and its relation with (non-)motor manifestations. Methods: Concentrations of metabolites of dopaminergic, serotonergic and noradrenergic pathways were measured in platelet-rich plasma in 41 myoclonus-dystonia (M-D), 25 dopa-responsive dystonia (DRD), 50 cervical dystonia (CD) patients and 55 healthy individuals. (Non-)motor symptoms were assessed using validated instruments, and correlated with concentrations of metabolites. Results: A significantly higher concentration of 3-methoxytyramine (0.03 vs. 0.02 nmol/L, p < 0.01), a metabolite of dopamine, and a reduced concentration of tryptophan (50 vs. 53 μmol/L, p = 0.03), the precursor of serotonin was found in dystonia patients compared to controls. The dopamine/levodopa ratio was higher in CD patients compared to other dystonia groups (p < 0.01). Surprisingly, relatively high concentrations of levodopa were found in the untreated DRD patients. Low concentrations of levodopa were associated with severity of dystonia (rs = −0.3, p < 0.01), depression (rs = −0.3, p < 0.01) and fatigue (rs = −0.2, p = 0.04). Conclusion: This study shows alterations in the dopaminergic and serotonergic metabolism of patients with dystonia, with dystonia subtype specific changes. Low concentrations of levodopa, but not of serotonergic metabolites, were associated with both motor and non-motor symptoms. Further insight into the dopaminergic and serotonergic systems in dystonia with a special attention to the kinetics of enzymes involved in these pathways, might lead to better treatment options

    Early Onset Ataxia with Comorbid Dystonia:Clinical, Anatomical and Biological Pathway Analysis Expose Shared Pathophysiology

    Get PDF
    In degenerative adult onset ataxia (AOA), dystonic comorbidity is attributed to one disease continuum. However, in early adult onset ataxia (EOA), the prevalence and pathogenesis of dystonic comorbidity (EOAD(+)), are still unclear. In 80 EOA-patients, we determined the EOAD(+)-prevalence in association with MRI-abnormalities. Subsequently, we explored underlying biological pathways by genetic network and functional enrichment analysis. We checked pathway-outcomes in specific EOAD(+)-genotypes by comparing results with non-specifically (in-silico-determined) shared genes in up-to-date EOA, AOA and dystonia gene panels (that could concurrently cause ataxia and dystonia). In the majority (65%) of EOA-patients, mild EOAD(+)-features concurred with extra-cerebellar MRI abnormalities (at pons and/or basal-ganglia and/or thalamus (p = 0.001)). Genetic network and functional enrichment analysis in EOAD(+)-genotypes indicated an association with organelle- and cellular-component organization (important for energy production and signal transduction). In non-specifically, in-silico-determined shared EOA, AOA and dystonia genes, pathways were enriched for Krebs-cycle and fatty acid/lipid-metabolic processes. In frequently occurring EOAD(+)-phenotypes, clinical, anatomical and biological pathway analyses reveal shared pathophysiology between ataxia and dystonia, associated with cellular energy metabolism and network signal transduction. Insight in the underlying pathophysiology of heterogeneous EOAD(+)-phenotype-genotype relationships supports the rationale for testing with complete, up-to-date movement disorder gene lists, instead of single EOA gene-panels.</p

    Periodic fever in MVK deficiency: a patient initially diagnosed with incomplete Kawasaki disease.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Mevalonate kinase deficiency (MKD) is a rare autosomal recessive disorder causing 1 of 2 phenotypes, hyperimmunoglobulin D syndrome and mevalonic aciduria, presenting with recurrent fever episodes, often starting in infancy, and sometimes evoked by stress or vaccinations. This autoinflammatory disease is caused by mutations encoding the mevalonate kinase (MVK) gene and is classified in the group of periodic fever syndromes. There is often a considerable delay in the diagnosis among pediatric patients with recurrent episodes of fever. We present a case of an 8-week-old girl with fever of unknown origin and a marked systemic inflammatory response. After excluding infections, a tentative diagnosis of incomplete Kawasaki syndrome was made, based on the finding of dilated coronary arteries on cardiac ultrasound and fever, and she was treated accordingly. However, the episodes of fever recurred, and alternative diagnoses were considered, which eventually led to the finding of increased excretion of mevalonic acid in urine. The diagnosis of MKD was confirmed by mutation analysis of the MVK gene. This case shows that the initial presentation of MKD can be indistinguishable from incomplete Kawasaki syndrome. When fever recurs in Kawasaki syndrome, other (auto-)inflammatory diseases must be ruled out to avoid inappropriate diagnostic procedures, ineffective interventions, and treatment delay
    • …
    corecore