28 research outputs found

    Fecapentaenes and risk for colorectal cancer

    Get PDF

    Genes in concert:a toxicogenomics hymn towards disease prevention

    Get PDF

    Radicals in the church

    No full text

    Evaluation of fecal mutagenicity and colorectal cancer risk

    No full text
    Colorectal cancer is one of the most common internal malignancies in Western society. The cause of this disease appears to be multifactorial and involves genetic as well as environmental aspects. The human colon is continuously exposed to a complex mixture of compounds, which is either of direct dietary origin or the result of digestive, microbial and excretory processes. In order to establish the mutagenic burden of the colorectal mucosa, analysis of specific compounds in feces is usually preferred. Alternatively, the mutagenic potency of fecal extracts has been determined, but the interpretation of these more integrative measurements is hampered by methodological shortcomings. In this review, we focus on exposure of the large bowel to five different classes of fecal mutagens that have previously been related to colorectal cancer risk. These include heterocyclic aromatic amines (HCA) and polycyclic aromatic hydrocarbons (PAH), two exogenous factors that are predominantly ingested as pyrolysis products present in food and (partially) excreted in the feces. Additionally, we discuss N-nitroso-compounds, fecapentaenes and bile acids, all fecal constituents (mainly) of endogenous origin. The mutagenic and carcinogenic potency of the above mentioned compounds as well as their presence in feces, proposed mode of action and potential role in the initiation and promotion of human colorectal cancer are discussed. The combined results from in vitro and in vivo research unequivocally demonstrate that these classes of compounds comprise potent mutagens that induce many different forms of genetic damage and that particularly bile acids and fecapentaenes may also affect the carcinogenic process by epigenetic mechanisms. Large inter-individual differences in levels of exposures have been reported, including those in a range where considerable genetic damage can be expected based on evidence from animal studies. Particularly, however, exposure profiles of PAH and N-nitroso compounds (NOC) have to be more accurately established to come to a risk evaluation. Moreover, lack of human studies and inconsistency between epidemiological data make it impossible to describe colorectal cancer risk as a result of specific exposures in quantitative terms, or even to indicate the relative importance of the mutagens discussed. Particularly, the polymorphisms of genes involved in the metabolism of heterocyclic amines are important determinants of carcinogenic risk. However, the present knowledge of gene-environment interactions with regard to colorectal cancer risk is rather limited. We expect that the introduction of DNA chip technology in colorectal cancer epidemiology will offer new opportunities to identify combinations of exposures and genetic polymorphisms that relate to increased cancer risk. This knowledge will enable us to improve epidemiological study design and statistical power in future research

    Radical mechanisms in nitrosamine- and nitrosamide-induced whole-genome gene expression modulations in Caco-2 cells.

    Get PDF
    N-nitroso compounds (NOC) may be implicated in human colon carcinogenesis, but the toxicological mechanisms involved have not been elucidated. Since it was previously demonstrated that nitrosamines and nitrosamides, representing two classes of NOC, induce distinct gene expression effects in colon cells that are particularly related to oxidative stress, we hypothesized that different radical mechanisms are involved. Using ESR spectroscopy, we investigated radical generating properties of genotoxic NOC concentrations in human colon adenocarcinoma cells (Caco-2). Cells were exposed to nitrosamides (N-methyl-N'-nitro-N-nitrosoguanidine, N-methyl-N-nitrosurea) or nitrosamines (N-nitrosodiethylamine, N-nitrosodimethylamine, N-nitrosopiperidine, N-nitrosopyrrolidine). Nitrosamines caused formation of reactive oxygen species (ROS) and carbon centered radicals which was further stimulated in presence of Caco-2 cells. N-methyl-N-nitrosurea exposure resulted in a small ROS signal, and formation of nitrogen centered radicals (NCR), also stimulated by Caco-2 cells. N-methyl-N'-nitro-N-nitrosoguanidine did not cause radical formation at genotoxic concentrations, but at increased exposure levels, both ROS and NCR formation was observed. By associating gene expression patterns with ROS formation, several cellular processes responding to nitrosamine exposure were identified, including apoptosis, cell cycle blockage, DNA repair and oxidative stress. These findings suggest that following NOC exposure in Caco-2 cells, ROS formation plays an important role in deregulation of gene expression patterns which may be relevant for the process of chemical carcinogenesis in the human colon, in addition to the role of DNA alkylation

    Teaching basic environmental health in universities utilising an interdisciplinary holistic approach and interactive learning methods

    No full text
    Abstract the need to transcend disciplinary boundaries in the teaching of environmental studies has become increasingly obvious. It has been particularly recognized that the relationship between environmental factors and human health needs to be taught much more broadly at universities. An international collaborative effort was begun to develop a course to teach core knowledge in environmental health to health professionals as well as others from a wide variety of disciplinary backgrounds. The course utilizes interactive learning methods and takes a holistic approach to the subject matter, linking the macro socioeconomic issues with the physical, chemical, biological, mechanical, and psychological hazards, as well as with the human health effects. It also aims to build skills in risk assessment, management, and communication. Several meetings (with representatives from the world health organization, the united national environment programme, the united nations educational, scientific, and cultural organisation, and the council of rectors of european universities), a survey completed by 120 universities, a 3-day workshop (with teachers from across the globe), and three 2-week train-the-trainer courses (one in the baltic, one in the danube region, and one in south africa) led to the conclusion that interdisciplinary, interactive teaching materials were highly desired, feasible to develop through international collaboration, and conducive to conveying the basic principles and methodologies needed to address environmental health problems

    Effects on cell proliferation, activator protein-1 and genotoxicity by fecal water from patients with colorectal adenomas

    No full text
    Effects on cell proliferation, activator protein-1 and genotoxicity by fecal water from patients with colorectal adenomas. Nordling MM, Glinghammar B, Karlsson PC, de Kok TM, Rafter JJ. Dept. of Medical Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden. BACKGROUND: The free water phase of feces (fecal water) may mediate the effects of diet on colon carcinogenesis. We examined the effects of fecal water from adenoma patients and controls on three parameters in colonocytes believed to be relevant to tumorigenesis, i.e. genotoxicity in intact cells and on isolated DNA, proliferative activity and activator protein-1 (AP-1) activity. METHODS: Genotoxicity in intact colonic cells was assayed using the single-cell gel electrophoresis assay ('comet' assay) and on isolated DNA using double-stranded DNA from the X-174 RF plasmid. Cell proliferation was assessed using the commercially available 'alamar blue' proliferation kit and AP-1 activity using cells transiently transfected with an AP-1-luciferase reporter construct. RESULTS: The data showed that lipid extracts of fecal water samples from the adenoma patients had a significantly higher capacity to induce cell proliferation than those from controls, and that this effect could be explained to a large extent by the concentrations of deoxycholic and chenodeoxycholic acids in the fecal water using regression models. No difference between patients and controls was observed for induction of AP-1 activity or induction of DNA strand breaks in intact cells. However, induction of DNA strand breaks in isolated DNA was significantly higher for the fecal waters from patients than for those from controls, which could be explained in part in a regression model by concentrations of lithocholic acid in fecal water and fecapentaene-12 in feces. CONCLUSIONS: Our results support the hypothesis that the biochemistry of fecal waters from adenoma patients and controls differ
    corecore