5 research outputs found

    Combining Radiotherapy With Anti-angiogenic Therapy and Immunotherapy; A Therapeutic Triad for Cancer?

    Get PDF
    Radiotherapy has been used for the treatment of cancer for over a century. Throughout this period, the therapeutic benefit of radiotherapy has continuously progressed due to technical developments and increased insight in the biological mechanisms underlying the cellular responses to irradiation. In order to further improve radiotherapy efficacy, there is a mounting interest in combining radiotherapy with other forms of therapy such as anti-angiogenic therapy or immunotherapy. These strategies provide different opportunities and challenges, especially with regard to dose scheduling and timing. Addressing these issues requires insight in the interaction between the different treatment modalities. In the current review, we describe the basic principles of the effects of radiotherapy on tumor vascularization and tumor immunity and vice versa. We discuss the main strategies to combine these treatment modalities and the hurdles that have to be overcome in order to maximize therapeutic effectivity. Finally, we evaluate the outstanding questions and present future prospects of a therapeutic triad for cancer

    Combining Radiotherapy With Anti-angiogenic Therapy and Immunotherapy; A Therapeutic Triad for Cancer?

    No full text
    Radiotherapy has been used for the treatment of cancer for over a century. Throughout this period, the therapeutic benefit of radiotherapy has continuously progressed due to technical developments and increased insight in the biological mechanisms underlying the cellular responses to irradiation. In order to further improve radiotherapy efficacy, there is a mounting interest in combining radiotherapy with other forms of therapy such as anti-angiogenic therapy or immunotherapy. These strategies provide different opportunities and challenges, especially with regard to dose scheduling and timing. Addressing these issues requires insight in the interaction between the different treatment modalities. In the current review, we describe the basic principles of the effects of radiotherapy on tumor vascularization and tumor immunity and vice versa. We discuss the main strategies to combine these treatment modalities and the hurdles that have to be overcome in order to maximize therapeutic effectivity. Finally, we evaluate the outstanding questions and present future prospects of a therapeutic triad for cancer

    Phase II study of pembrolizumab in refractory esophageal cancer with correlates of response and survival

    No full text
    Background Immune checkpoint inhibitors have revolutionized cancer treatment, but the benefits in refractory patients with esophageal cancer have been modest. Predictors of response as well as new targets for novel therapeutic combinations are needed. In this phase 2 clinical trial, we tested single-agent pembrolizumab in patients with advanced esophageal cancer, who received at least one prior line of therapy. Methods Pembrolizumab 200 mg every 3 weeks was tested in 49 patients with refractory esophageal cancer: 39 with adenocarcinoma and 10 with esophageal squamous cell carcinoma. Major endpoints were radiological response by Immune-related Response Evaluation Criteria In Solid Tumors and survival. Tumor samples were evaluated for programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), and immune contexture by both NanoString mRNA expression analysis and flow cytometry. Peripheral blood mononuclear cells and a panel of circulating chemokines were also analyzed. Results The overall response rate (ORR) was 8% (4 of 49 patients; 95% CI 2.3% to 19.6%). Median overall survival (OS) was 5.8 months (95% CI 4.0 to 9.5). ORR and OS were not associated with histology. For PD-L1-positive patients, ORR was 13.3% (95% CI 1.7% to 40.5%) and median OS was 7.9 months (95% CI 4.7 to 15.5). A trend toward improved OS was observed in seven patients with a TMB ≥10 mut/Mb (p=0.086). Tumors with a PD-L1 Combined Positive Score ≥1 showed enrichment of LAG3 (p=0.005) and IDO1 (p=0.04) gene expression. Baseline levels of circulating CXCL10, interleukin 2 (IL2) receptor α (IL2RA) and IL6 were associated with survival: CXCL10 favorably, (HR 0.37, p=0.002 (progression-free survival); HR 0.55, p=0.018 (OS)); IL2RA and IL6 unfavorably (HR 1.57, p=0.020 for IL6 (OS); HR 2.36, p=0.025 for IL2RA (OS)). Conclusions Pembrolizumab monotherapy was modestly effective in refractory esophageal cancer. Circulating CXCL10 at baseline appeared to be a robust predictor of response. Other T cell exhaustion markers are upregulated in PD-L1-positive patients, suggesting that immunotherapy combinations such as anti-LAG3/programmed cell death protein 1 (PD-1) or anti-IDO1/PD-1 may be of promise in refractory esophageal cancer

    Gain-of-function RHOA mutations promote focal adhesion kinase activation and dependency in diffuse gastric cancer

    No full text
    Diffuse gastric cancer (DGC) is a lethal malignancy lacking effective systemic therapy. Among the most provocative recent results in DGC has been that of highly recurrent missense mutations in the GTPase RHOA. The function of these mutations has remained unresolved. We demonstrate that RHOAY42C, the most common RHOA mutation in DGC, is a gain-of-function oncogenic mutant, and that expression of RHOAY42C with inactivation of the canonical tumor suppressor Cdh1 induces metastatic DGC in a mouse model. Biochemically, RHOAY42C exhibits impaired Y42C GTP hydrolysis and enhances interaction with its effector ROCK. RHOA mutation and Cdh1 loss induce actin/cytoskeletal rearrangements and activity of focal adhesion kinase (FAK), which activates YAP–TAZ, PI3K–AKT, and β-catenin. RHOAY42C murine models were sensitive to FAK inhibition and to combined YAP and PI3K pathway blockade. These results, coupled with sensitivity to FAK inhibition in patient-derived DGC cell lines, nominate FAK as a novel target for these cancers. SIGNIFICANCE: The functional significance of recurrent RHOA mutations in DGC has remained unresolved. Through biochemical studies and mouse modeling of the hotspot RHOAY42C mutation, we establish that these mutations are activating, detail their effects upon cell signaling, and define how RHOA-mediated FAK activation imparts sensitivity to pharmacologic FAK inhibitors

    Molecular profiles of response to neoadjuvant chemoradiotherapy in oesophageal cancers to develop personalized treatment strategies

    No full text
    Identification of molecular predictive markers of response to neoadjuvant chemoradiation could aid clinical decision-making in patients with localized oesophageal cancer. Therefore, we subjected pretreatment biopsies of 75 adenocarcinoma (OAC) and 16 squamous cell carcinoma (OSCC) patients to targeted next-generation DNA sequencing, as well as biopsies of 85 OAC and 20 OSCC patients to promoter methylation analysis of eight GI-specific genes, and subsequently searched for associations with histopathological response and disease-free (DFS) and overall survival (OS). Thereby, we found that in OAC, CSMD1 deletion (8%) and ETV4 amplification (5%) were associated with a favourable histopathological response, whereas SMURF1 amplification (5%) and SMARCA4 mutation (7%) were associated with an unfavourable histopathological response. KRAS (15%) and GATA4 (7%) amplification were associated with shorter OS. In OSCC, TP63 amplification (25%) and TFPI2 (10%) gene promoter methylation were associated with an unfavourable histopathological response and shorter DFS (TP63) and OS (TFPI2), whereas CDKN2A deletion (38%) was associated with prolonged OS. In conclusion, this study identified candidate genetic biomarkers associated with response to neoadjuvant chemoradiotherapy in patients with localized oesophageal cancer
    corecore