30 research outputs found

    Effort and work-of-breathing parameters strongly correlate with increased resistance in an animal model

    Get PDF
    Background: Effort of Breathing (EOB) calculations may be a reliable alternative to Work of Breathing (WOB) calculations in which Respiratory Inductance Plethysmography (RIP) replaces spirometry. We sought to compare EOB and WOB measurements in a nonhuman primate model of increasing extrathoracic inspiratory resistance simulating upper airway obstruction (UAO).Methods: RIP, spirometry, and esophageal manometry were measured in spontaneously breathing, intubated Rhesus monkeys utilizing 11 calibrated resistors randomly applied for 2-min. EOB was calculated breath-by-breath as Pressure Rate Product (PRP) and Pressure Time Product (PTP). WOB was calculated from the Pressure-Volume curve based on spirometry (WOBSPIR) or RIP flow (WOBRIP).Results: WOB, PRP and PTP showed similar linear increases when exposed to higher levels of resistive loads. When comparing WOBSPIR to WOBRIP, a similar strong correlation was seen for both signals as resistance increased and there were no statistically significant differences.Conclusion: EOB and WOB parameters utilizing esophageal manometry and RIP, independent of spirometry, showed a strong correlation as a function of increasing inspiratory resistance in nonhuman primates. This allows several potential monitoring possibilities for non-invasively ventilated patients or situations where spirometry is not available. Impact: EOB and WOB parameters showed a strong correlation as a function of increasing inspiratory resistance in nonhuman primates.There was a strong correlation between spirometry-based WOB versus RIP-based WOB.To date, it has remained untested as to whether EOB is a reliable alternative for WOB and if RIP can replace spirometry in these measurements.Our results enable additional potential monitoring possibilities for non-invasively ventilated patients or situations where spirometry is not available.Where spirometry is not available, there is no need to apply a facemask post extubation to a spontaneously breathing, non-intubated infant to make objective EOB measurements.</p

    Transcutaneous electromyographic respiratory muscle recordings to quantify patient-ventilator interaction in mechanically ventilated children

    Get PDF
    BACKGROUND: To explore the feasibility of transcutaneous electromyographic respiratory muscle recordings to automatically quantify the synchronicity of patient-ventilator interaction in the pediatric intensive care unit. METHODS: Prospective observational study in a tertiary paediatric intensive care unit in an university hospital. Spontaneous breathing mechanically ventilated children < 18 years of age were eligible for inclusion. Patients underwent a 5-min continuous recording of ventilator pressure waveforms and transcutaneous electromyographic signal of the diaphragm. To evaluate patient-ventilator interaction, the obtained neural inspiration and ventilator pressurization timings were used to calculate trigger and cycle-off errors of each breath. Calculated errors were displayed in the dEMG-phase scale. RESULTS: Data of 23 patients were used for analysis. Based on the dEMG-phase scale, the median rates of synchronous, dyssynchronous and asynchronous breaths as classified by the automated analysis were 12.2% (1.9-33.8), 47.5% (36.3-63.1), and 28.9% (6.6-49.0). CONCLUSIONS: The dEMG-phase scale quantifying patient-ventilator breath synchronicity was demonstrated to be feasible and a reliable scale for mechanically ventilated children, reflected by high intra-class correlation coefficients. As this non-invasive tool is not restricted to a type of ventilator, it could easily be clinical implemented in the ventilated pediatric population. However; correlation studies between the EMG signal measured by surface EMG and esophageal catheters have to be performed

    Effect of closed endotracheal suction in high-frequency ventilated premature infants measured with electrical impedance tomography

    Get PDF
    Objective: To determine the global and regional changes in lung volume during and after closed endotracheal tube (ETT) suction in high-frequency ventilated preterm infants with respiratory distress syndrome (RDS). Design: Prospective observational clinical study. Setting: Neonatal intensive care unit. Patients: Eleven non-muscle relaxed preterm infants with RDS ventilated with open lung high-frequency ventilation (HFV). Interventions: Closed ETT suction. Measurements and results: Changes in global and regional lung volume were measured with electrical impedance tomography. ETT suction resulted in an acute loss of lung volume followed by spontaneous recovery with a median residual loss of 3.3% of the maximum volume loss. The median stabilization time was 8 s. At the regional level, the lung volume changes during and after ETT suction were heterogeneous in nature. Conclusions: Closed ETT suction causes an acute, transient and heterogeneous loss of lung volume in premature infants with RDS treated with open lung HFV

    The effect of nebulized salbutamol or isotonic saline on exercise-induced bronchoconstriction in elite skaters following a 1,500-meter race:study protocol for a randomized controlled trial

    Get PDF
    <p>Background: Prevalence of exercise-induced bronchoconstriction (EIB) is high in elite athletes, especially after many years training in cold and dry air conditions. The primary treatment of EIB is inhaling a short-acting beta-2-agonist such as salbutamol. However, professional speed skaters also inhale nebulized isotonic saline or tap water before and after a race or intense training. The use of nebulized isotonic saline or tap water to prevent EIB has not been studied before, raising questions about safety and efficacy. The aim of this study is to analyze the acute effect of nebulized isotonic saline or salbutamol on EIB in elite speed skaters following a1,500-meter race.</p><p>Methods: This randomized controlled trial compares single dose treatment of 1 mg nebulized salbutamol in 4 mL of isotonic saline, or with 5 mL of isotonic saline. A minimum of 13 participants will be allocated in each treatment group. Participants should be between 18 and 35 years of age and able to skate 1,500 m in less than 2 min 10 s (women) or 2 min 05 s (men). Repeated measurements of spirometry, forced oscillation technique, and electromyography will be performed before and after an official 1,500-m race. Primary outcome of the study is the difference in fall in FEV1 after exercise in the different treatment groups. The trial is currently enrolling participants.</p><p>Discussion: Elite athletes run the risk of pulmonary inflammation and remodeling as a consequence of their frequent exercise, and thus increased ventilation in cold and dry environments. Although inhalation of nebulized isotonic saline is commonplace, no study has ever investigated the safety or efficacy of this treatment.</p>
    corecore