5 research outputs found
Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly: Biochemical Demonstration and Molecular Analysis
The nuclear pore complex (NPC) is characterized by a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel, within which the nuclear pore is built, has little evolutionary precedent. In this report we demonstrate and map the inner/outer nuclear membrane fusion in NPC assembly
Abnormal Nuclear pore formation triggers apoptosis in the intestinal epithelium of elys-Deficient zebrafish
Background & Aims: Zebrafish mutants generated by ethylnitrosourea-mutagenesis provide a powerful toot for dissecting the genetic regulation of developmental processes, including organogenesis. One zebrafish mutant, "flotte lotte" (flo), displays striking defects in intestinal, liver, pancreas, and eye formation at 78 hours postfertilization (hpf). In this study, we sought to identify the underlying mutated gene in flo and link the generic lesion to its phenotype. Methods: Positional cloning was employed to map the flo mutation. Subcellular characterization of flo embryos was achieved using histology, immunocytochemistry, bromodeoxyuridine incorporation analysis, and confocal and electron microscopy. Results: The molecular lesion in flo is a nonsense mutation in the elys (embryonic large molecule derived from yolk sac) gene, which encodes a severely truncated protein lacking the Elys C-terminal AT-hook DNA binding domain. Recently, the human ELYS protein has been shown to play a critical, and hitherto unsuspected, role in nuclear pore assembly. Although elys messenger RNA (mRNA) is expressed broadly during early zebrafish development, widespread early defects in flo are circumvented by the persistence of maternally expressed elys mRNA until 24 hpf From 72 hpf, elys mRNA expression is restricted to proliferating tissues, including the intestinal epithelium, pancreas, liver, and eye. Cells in these tissues display disrupted nuclear pore formation; ultimately, intestinal epithelial cells undergo apoptosis. Conclusions: Our results demonstrate that Elys regulates digestive organ formation
Transportin Regulates Major Mitotic Assembly Events: From Spindle to Nuclear Pore Assembly
Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportinâand importin betaâinitiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events