980 research outputs found

    Efficient annotated terms

    Get PDF

    Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration

    Get PDF
    Extracellular vesicles (EVs) are a population of small vesicles secreted by essentially all cell types, containing a wide variety of biological macromolecules. Due to their intrinsic capabilities for efficient intercellular communication, they are involved in various aspects of cellular functioning. In the past decade, EVs derived from stem cells attracted interest in the field of regenerative medicine. Owing to their regenerative properties, they have great potential for use in tissue repair, in particular for tissues with limited regenerative capabilities such as cartilage. The maintenance of articular cartilage is dependent on a precarious balance of many different components that can be disrupted by the onset of prevalent rheumatic diseases. However, while cartilage is a tissue with strong mechanical properties that can withstand movement and heavy loads for years, it is virtually incapable of repairing itself after damage has occurred. Stem cell-derived EVs (SC-EVs) transport regenerative components such as proteins and nucleic acids from their parental cells to recipient cells, thereby promoting cartilage healing. Many possible pathways through which SC-EVs execute their regenerative function have been reported, but likely there are still numerous other pathways that are still unknown. This review discusses various preclinical studies investigating intra-articular injections of free SC-EVs, which, while often promoting chondrogenesis and cartilage repair in vivo, showed a recurring limitation of the need for multiple administrations to achieve sufficient tissue regeneration. Potentially, this drawback can be overcome by making use of an EV delivery platform that is capable of sustainably releasing EVs over time. With their remarkable versatility and favourable chemical, biological and mechanical properties, hydrogels can facilitate this release profile by encapsulating EVs in their porous structure. Ideally, the optimal delivery platform can be formed in-situ, by means of an injectable hydrogel that can be administered directly into the affected joint. Relevant research fulfilling these criteria is discussed in detail, including the steps that still need to be taken before injectable hydrogels for sustained delivery of EVs can be applied in the context of cartilage regeneration in the clinic

    Hybrid modeling of biological networks: mixing temporal and qualitative biological properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modeling a dynamical biological system is often a difficult task since the a <it>priori </it>unknown parameters of such models are not always directly given by the experiments. Despite the lack of experimental quantitative knowledge, one can see a dynamical biological system as (i) the combined evolution tendencies (increase or decrease) of the biological compound concentrations, and: (ii) the temporal features, such as delays between two concentration peaks (i.e. the times when one of the components completes an increase (resp. decrease) phase and starts a decrease (resp. increase) phase).</p> <p>Results</p> <p>We propose herein a new hybrid modeling framework that follows such biological assumptions. This hybrid approach deals with both a qualitative structure of the system and a quantitative structure. From a theoretical viewpoint, temporal specifications are expressed as equality or inequality constraints between delay parameters, while the qualitative specifications are expressed as an ordered pattern of the concentrations peaks of the components. Using this new hybrid framework, the temporal specifications of a biological system can be obtained from incomplete experimental data. The model may be processed by a hybrid model-checker (e.g. Phaver) which is able to give some new constraints on the delay parameters (e.g. the delay for a given transition is exactly 5 hours after the later peak of a gene product concentration). Furthermore, by using a constraint solver on the previous results, it becomes possible to get the set of parameters settings which are consistent with given specifications. Such a modeling approach is particularly accurate for modeling oscillatory biological behaviors like those observed in the Drosophila circadian cycles. The achieved results concerning the parameters of this oscillatory system formally confirm the several previous studies made by numerical simulations. Moreover, our analysis makes it possible to propose an automatic investigation of the respective impact of per and tim on the circadian cycle.</p> <p>Conclusions</p> <p>A new hybrid technique for an automatic formal analysis of biological systems is developed with a special emphasis on their oscillatory behaviors. It allows the use of incomplete and empirical biological data.</p

    Comparison of pregnancy outcomes in Dutch kidney recipients with and without calcineurin inhibitor exposure:a retrospective study

    Get PDF
    Within pregnancies occurring between 1986 and 2017 in Dutch kidney transplant recipients (KTR), we retrospectively compared short-term maternal and foetal outcomes between patients on calcineurin inhibitor (CNI) based (CNI+) and CNI-free immunosuppression (CNI-). We identified 129 CNI+ and 125 CNI- pregnancies in 177 KTR. Demographics differed with CNI+ having higher body mass index (P = 0.045), shorter transplant-pregnancy interval (P < 0.01), later year of transplantation and -pregnancy (P < 0.01). Serum creatinine levels were numerically higher in CNI+ in all study phases, but only reached statistical significance in third trimester (127 vs. 105 mu m; P < 0.01), where the percentual changes from preconceptional level also differed (+3.1% vs. -2.2% in CNI-; P = 0.05). Postpartum both groups showed 11-12% serum creatinine rise from preconceptional level. Incidence of low birth weight (LBW) tended to be higher in CNI+ (52% vs. 46%; P = 0.07). Both groups showed equal high rates of preterm delivery. Using CNIs during pregnancy lead to a rise in creatinine in the third trimester but does not negatively influence the course of graft function in the first year postpartum or direct foetal outcomes. High rates of preterm delivery and LBW in KTR, irrespective of CNI use, classify all pregnancies as high risk

    Functional siRNA Delivery by Extracellular Vesicle-Liposome Hybrid Nanoparticles

    Get PDF
    The therapeutic use of RNA interference is limited by the inability of siRNA molecules to reach their site of action, the cytosol of target cells. Lipid nanoparticles, including liposomes, are commonly employed as siRNA carrier systems to overcome this hurdle, although their widespread use remains limited due to a lack of delivery efficiency. More recently, nature's own carriers of RNA, extracellular vesicles (EVs), are increasingly being considered as alternative siRNA delivery vehicles due to their intrinsic properties. However, they are difficult to load with exogenous cargo. Here, EV-liposome hybrid nanoparticles (hybrids) are prepared and evaluated as an alternative delivery system combining properties of both liposomes and EVs. It is shown that hybrids are spherical particles encapsulating siRNA, contain EV-surface makers, and functionally deliver siRNA to different cell types. The functional behavior of hybrids, in terms of cellular uptake, toxicity, and gene-silencing efficacy, is altered as compared to liposomes and varies among recipient cell types. Moreover, hybrids produced with cardiac progenitor cell (CPC) derived-EVs retain functional properties attributed to CPC-EVs such as activation of endothelial signaling and migration. To conclude, hybrids combine benefits of both synthetic and biological drug delivery systems and might serve as future therapeutic carriers of siRNA

    Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies

    Modulation of Conductance and Ion Selectivity of OmpF Porin by La3+ Ions

    Get PDF
    Background: Auditing is an important tool to identify practice variation and 'best practices'. The Dutch Pancreatic Cancer Audit is mandatory in all 18 Dutch centers for pancreatic surgery. Methods: Performance indicators and case-mix factors were identified by a PubMed search for randomized controlled trials (RCT's) and large series in pancreatic surgery. In addition, data dictionaries of two national audits, three institutional databases, and the Dutch national cancer registry were evaluated. Morbidity, mortality, and length of stay were analyzed of all pancreatic resections registered during the first two audit years. Case ascertainment was cross-checked with the Dutch healthcare inspectorate and key-variables validated in all centers. Results: Sixteen RCT's and three large series were found. Sixteen indicators and 20 case-mix factors were included in the audit. During 2014-2015, 1785 pancreatic resections were registered including 1345 pancreatoduodenectomies. Overall in-hospital mortality was 3.6%. Following pancreatoduodenectomy, mortality was 4.1%, Clavien-Dindo grade >= III morbidity was 29.9%, median (IQR) length of stay 12 (9-18) days, and readmission rate 16.0%. In total 97.2% of >40,000 variables validated were consistent with the medical charts. Conclusions: The Dutch Pancreatic Cancer Audit, with high quality data, reports good outcomes of pancreatic surgery on a national level

    Pancreatic resection in the pediatric, adolescent and young adult population:nationwide analysis on complications

    Get PDF
    Background: The aim of this study was to determine pancreatic surgery specific short- and long-term complications of pediatric, adolescent and young adult (PAYA) patients who underwent pancreatic resection, as compared to a comparator cohort of adults. Methods: A nationwide retrospective cohort study was performed in PAYA patients who underwent pancreatic resection between 2007 and 2016. PAYA was defined as all patients <40 years at time of surgery. Pancreatic surgery-specific complications were assessed according to international definitions and textbook outcome was determined. Results: A total of 230 patients were included in the PAYA cohort (112 distal pancreatectomies, 99 pancreatoduodenectomies), and 2526 patients in the comparator cohort. For pancreatoduodenectomy, severe morbidity (29.3% vs. 28.6%; P = 0.881), in-hospital mortality (1% vs. 4%; P = 0.179) and textbook outcome (62% vs. 58%; P = 0.572) were comparable between the PAYA and the comparator cohort. These outcomes were also similar for distal pancreatectomy. After pancreatoduodenectomy, new-onset diabetes mellitus (8% vs. 16%) and exocrine pancreatic insufficiency (27% vs. 73%) were lower in the PAYA cohort when compared to adult literature. Conclusion: Pancreatic surgery-specific complications were comparable with patients ≥40 years. Development of endocrine and exocrine insufficiency in PAYA patients who underwent pancreatoduodenectomy, however, was substantially lower compared to adult literature

    ALIFE2 study : low-molecular-weight heparin for women with recurrent miscarriage and inherited thrombophilia : study protocol for a randomized controlled trial

    Get PDF
    Background A large number of studies have shown an association between inherited thrombophilia and recurrent miscarriage. It has been hypothesized that anticoagulant therapy might reduce the number of miscarriages and stillbirth in these women. In the absence of randomized controlled trials evaluating the efficacy of anticoagulant therapy in women with inherited thrombophilia and recurrent miscarriage, a randomized trial with adequate power that addresses this question is needed. The objective of the ALIFE2 study is therefore to evaluate the efficacy of low-molecular-weight heparin (LMWH) in women with inherited thrombophilia and recurrent miscarriage, with live birth as the primary outcome. Methods/Design Randomized study of LMWH plus standard pregnancy surveillance versus standard pregnancy surveillance alone. Study population: pregnant women of less than 7 weeks’ gestation, and confirmed inherited thrombophilia with a history of 2 or more miscarriages or intra-uterine fetal deaths, or both. Setting: multi-center study in centers from the Dutch Consortium of Fertility studies; centers outside the Netherlands are currently preparing to participate. Intervention: LMWH enoxaparin 40 mg subcutaneously once daily started prior to 7 weeks gestational age plus standard pregnancy surveillance or standard pregnancy surveillance alone. Main study parameters/endpoints: the primary efficacy outcome is live birth. Secondary efficacy outcomes include adverse pregnancy outcomes, such as miscarriage, pre-eclampsia, syndrome of hemolysis, elevated liver enzymes and low platelets (HELLP syndrome), fetal growth restriction, placental abruption, premature delivery and congenital malformations. Safety outcomes include bleeding episodes, thrombocytopenia and skin reactions. Discussion After an initial period of slow recruitment, the recruitment rate for the study has increased. Improved awareness of the study and acknowledgement of the need for evidence are thought to be contributing to the improved recruitment rates. We aim to increase the number of recruiting centers in order to increase enrollment into the ALIFE2 study. The study website can be accessed via www.ALIFE2study.org. Trial registration The ALIFE2 study was registered on 19 March 2012 under registration number NTR336

    Anticancer Effects of 15d-Prostaglandin-J2 in Wild-Type and Doxorubicin-Resistant Ovarian Cancer Cells: Novel Actions on SIRT1 and HDAC

    Get PDF
    15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2), an arachidonic metabolite and a natural PPARγ agonist, is known to induce apoptosis in tumor cells. In this study, we investigated new therapeutic potentials of 15d-PGJ2 by determining its anticancer effects in wild-type and doxorubicin-resistant ovarian carcinoma cells. Despite high expression of resistance-inducing genes like MDR1, Bcl2 and Bcl-xl, 15d-PGJ2 strongly induced apoptosis in doxorubicin-resistant (A2780/AD) cells similar to the wild-type (A2780). This was found to be related to caspase-3/7- and NF-κB pathways but not to its PPARγ agonistic activity. 15d-PGJ2 also was able to reduce the doxorubicin resistance of A2780/AD cells at low doses as confirmed by the inhibition of gene expression of MDR1 (p-glycoprotein) and SIRT1 (a drug senescence gene). We also investigated effects of 15d-PGJ2 on cell migration and transformation using a wound-healing assay and morphological analyses, respectively. We found that 15d-PGJ2 inhibited migration most likely due to NF-κB inhibition and induced transformation of the round-shape A2780/AD cells into elongated epithelial cells due to HDAC1 inhibition. Using a 15d-PGJ2 analog, we found the mechanism of action of these new activities of 15d-PGJ2 on SIRT1 and HDAC1 gene expressions and enzyme activities. In conclusion, the present study demonstrates that 15d-PGJ2 has a high therapeutic potential to kill drug-resistant tumor cells and, the newly described inhibitory effects of this cyclo-oxygenase product on SIRT1 and HDAC will provide new opportunities for cancer therapeutics
    • …
    corecore