3 research outputs found

    Heterogeneous Pattern of Dependence on Anti-Apoptotic BCL-2 Family Proteins upon CHOP Treatment in Diffuse Large B-Cell Lymphoma

    Get PDF
    Expression of the anti-apoptotic B-cell lymphoma 2 (BCL-2) protein in patients with diffuse large B-cell lymphoma (DLBCL) strongly correlates with resistance to standard therapy with cyclophosphamide, vincristine, doxorubicin, prednisolone, and rituximab (R-CHOP). Although studies focus mainly on the contribution of BCL-2, here we also investigate the contribution of other anti-apoptotic proteins to CHOP-therapy resistance in DLBCL. Functional dynamic BCL-2 homology (BH)3 profiling was applied to DLBCL cell lines upon CHOP treatment or single CHOP compounds. Cell-specific anti-apoptotic dependencies were validated with corresponding BH3-mimetics. We found high expression of anti-apoptotic BCL-2, MCL-1, and BCL-XL in DLBCL cell lines and patients. CHOP treatment resulted in both enhanced and altered anti-apoptotic dependency. Enhanced sensitivity to different BH3-mimetics after CHOP treatment was confirmed in specific cell lines, indicating heterogeneity of CHOP-induced resistance in DLBCL. Analysis of single CHOP compounds demonstrated that similar changes could also be induced by doxorubicin or vincristine, providing evidence for clinical combination therapies of doxorubicin or vincristine with BH3-mimetics in DLBCL. In conclusion, we show for the first time that CHOP treatment induces increased anti-apoptotic dependency on MCL-1 and BCL-XL, and not just BCL-2. These results provide new perspectives for the treatment of CHOP-resistant DLBCL and underline the potential of BH3 profiling in predicting therapy outcomes

    WEE1 Inhibition Enhances Anti-Apoptotic Dependency as a Result of Premature Mitotic Entry and DNA Damage

    Get PDF
    Genomically unstable cancers are dependent on specific cell cycle checkpoints to maintain viability and prevent apoptosis. The cell cycle checkpoint protein WEE1 is highly expressed in genomically unstable cancers, including diffuse large B-cell lymphoma (DLBCL). Although WEE1 inhibition effectively induces apoptosis in cancer cells, the effect of WEE1 inhibition on anti-apoptotic dependency is not well understood. We show that inhibition of WEE1 by AZD1775 induces DNA damage and pre-mitotic entry in DLBCL, thereby enhancing dependency on BCL-2 and/or MCL-1. Combining AZD1775 with anti-apoptotic inhibitors such as venetoclax (BCL-2i) or S63845 (MCL-1i) enhanced sensitivity in a cell-specific manner. In addition, we demonstrate that both G2/M cell cycle arrest and DNA damage induction put a similar stress on DLBCL cells, thereby enhancing anti-apoptotic dependency. Therefore, genotoxic or cell cycle disrupting agents combined with specific anti-apoptotic inhibitors may be very effective in genomic unstable cancers such as DLBCL and therefore warrants further clinical evaluation
    corecore