28 research outputs found

    A compact and mobile hybrid C-arm scanner for simultaneous nuclear and fluoroscopic image guidance

    Get PDF
    Purpose: This study evaluates the performance of a mobile and compact hybrid C-arm scanner (referred to as IXSI) that is capable of simultaneous acquisition of 2D fluoroscopic and nuclear projections and 3D image reconstruction in the intervention room. Results: The impact of slightly misaligning the IXSI modalities (in an off-focus geometry) was investigated for the reduction of the fluoroscopic and nuclear interference. The 2D and 3D nuclear image quality of IXSI was compared with a clinical SPECT/CT scanner by determining the spatial resolution and sensitivity of point sources and by performing a quantitative analysis of the reconstructed NEMA image quality phantom. The 2D and 3D fluoroscopic image of IXSI was compared with a clinical CBCT scanner by visualizing the Fluorad A+D image quality phantom and by visualizing a reconstructed liver nodule phantom. Finally, the feasibility of dynamic simultaneous nuclear and fluoroscopic imaging was demonstrated by injecting an anthropomorphic phantom with a mixture of iodinated contrast and 99mTc. Conclusion: Due to the divergent innovative hybrid design of IXSI, concessions were made to the nuclear and fluoroscopic image qualities. Nevertheless, IXSI realizes unique image guidance that may be beneficial for several types of procedures. Key Points: • IXSI can perform time-resolved planar (2D) simultaneous fluoroscopic and nuclear imaging. • IXSI can perform SPECT/CBCT imaging (3D) inside the intervention room

    Cost-effectiveness of CT perfusion for the detection of large vessel occlusion acute ischemic stroke followed by endovascular treatment:a model-based health economic evaluation study

    Get PDF
    Objectives:CT perfusion (CTP) has been suggested to increase the rate of large vessel occlusion (LVO) detection in patients suspected of acute ischemic stroke (AIS) if used in addition to a standard diagnostic imaging regime of CT angiography (CTA) and non-contrast CT (NCCT). The aim of this study was to estimate the costs and health effects of additional CTP for endovascular treatment (EVT)–eligible occlusion detection using model-based analyses. Methods: In this Dutch, nationwide retrospective cohort study with model-based health economic evaluation, data from 701 EVT-treated patients with available CTP results were included (January 2018–March 2022; trialregister.nl:NL7974). We compared a cohort undergoing NCCT, CTA, and CTP (NCCT + CTA + CTP) with a generated counterfactual where NCCT and CTA (NCCT + CTA) was used for LVO detection. The NCCT + CTA strategy was simulated using diagnostic accuracy values and EVT effects from the literature. A Markov model was used to simulate 10-year follow-up. We adopted a healthcare payer perspective for costs in euros and health gains in quality-adjusted life years (QALYs). The primary outcome was the net monetary benefit (NMB) at a willingness to pay of €80,000; secondary outcomes were the difference between LVO detection strategies in QALYs (ΔQALY) and costs (ΔCosts) per LVO patient. Results: We included 701 patients (median age: 72, IQR: [62–81]) years). Per LVO patient, CTP-based occlusion detection resulted in cost savings (ΔCosts median: € − 2671, IQR: [€ − 4721; € − 731]), a health gain (ΔQALY median: 0.073, IQR: [0.044; 0.104]), and a positive NMB (median: €8436, IQR: [5565; 11,876]) per LVO patient. Conclusion: CTP-based screening of suspected stroke patients for an endovascular treatment eligible large vessel occlusion was cost-effective. Clinical relevance statement.: Although CTP-based patient selection for endovascular treatment has been recently suggested to result in worse patient outcomes after ischemic stroke, an alternative CTP-based screening for endovascular treatable occlusions is cost-effective. Key Points: • Using CT perfusion to detect an endovascular treatment-eligible occlusions resulted in a health gain and cost savings during 10 years of follow-up. • Depending on the screening costs related to the number of patients needed to image with CT perfusion, cost savings could be considerable (median: € − 3857, IQR: [€ − 5907; € − 1916] per patient). • As the gain in quality adjusted life years was most affected by the sensitivity of CT perfusion-based occlusion detection, additional studies for the diagnostic accuracy of CT perfusion for occlusion detection are required.</p

    Prediction of long-term recurrent ischemic stroke: the added value of non-contrast CT, CT perfusion, and CT angiography

    No full text
    Purpose: The aim of this study was to evaluate whether the addition of brain CT imaging data to a model incorporating clinical risk factors improves prediction of ischemic stroke recurrence over 5 years of follow-up. Methods: A total of 638 patients with ischemic stroke from three centers were selected from the Dutch acute stroke study (DUST). CT-derived candidate predictors included findings on non-contrast CT, CT perfusion, and CT angiography. Five-year follow-up data were extracted from medical records. We developed a multivariable Cox regression model containing clinical predictors and an extended model including CT-derived predictors by applying backward elimination. We calculated net reclassification improvement and integrated discrimination improvement indices. Discrimination was evaluated with the optimism-corrected c-statistic and calibration with a calibration plot. Results: During 5 years of follow-up, 56 patients (9%) had a recurrence. The c-statistic of the clinical model, which contained male sex, history of hyperlipidemia, and history of stroke or transient ischemic attack, was 0.61. Compared with the clinical model, the extended model, which contained previous cerebral infarcts on non-contrast CT and Alberta Stroke Program Early CT score greater than 7 on mean transit time maps derived from CT perfusion, had higher discriminative performance (c-statistic 0.65, P = 0.01). Inclusion of these CT variables led to a significant improvement in reclassification measures, by using the net reclassification improvement and integrated discrimination improvement indices. Conclusion: Data from CT imaging significantly improved the discriminatory performance and reclassification in predicting ischemic stroke recurrence beyond a model incorporating clinical risk factors only

    The Unique Role of Fluorodeoxyglucose-PET in Radioembolization

    No full text
    Recent research into the efficacy of radioembolization has brought this field to an interesting position, in which fluorodeoxyglucose (FDG)-PET/CT is being used extensively for prognosis and response assessment, as well as a tool to define viable tumor volumes for the use in dosimetry. As such, there is an overlap with existing techniques used in radiotherapy; however, many are very specific to the radioembolization paradigm. This article describes the current state-of-the-art of the use of FDG-PET/CT for patient selection, prognosis, treatment evaluation, and as a research tool into absorbed dose-response relationships in radioembolization

    Fast and accurate quantitative determination of the lung shunt fraction in hepatic radioembolization

    No full text
    Radioembolization treatment is preceded by a 99mTc-MAA safety procedure, which is used to estimate the lung shunt fraction (LSF). Normally, the LSF is estimated by using the geometric mean of planar scintigraphy (PS-GM). However, concern has been raised about the potential overestimation of the LSF by PS-GM. Alternatively, SPECT/CT may be used for LSF estimation, but requires lengthy acquisitions, 3D segmentation, and has a limited field of view, which calls for extrapolation of the reconstructed lung counts, which introduces another source of error. We have developed a simplified SPECT/CT protocol for LSF estimation, called the quantitative orthogonal planar (QOP) method that requires only four projections to quantitatively reconstruct liver and lung activity. This mitigates the problems associated with LSF estimations from SPECT/CT. The purpose of this study was to introduce and evaluate QOP by comparing its performance to PS-GM and SPECT/CT in a retrospective patient study, and by supporting simulation experiments. Patients who received at least one 99mTc-MAA safety procedure in our center were included in this study. QOP and PS-GM were compared to SPECT/CT in Bland-Altman analyses. Supporting digital phantom experiments with a known ground-truth were performed to evaluate the performance of this method. Analysis of PS-GM versus SPECT/CT LSF estimates revealed both a larger imprecision and significant bias by PS-GM (limits of agreement: 8.1 percentage points (pp); bias: 2.7 pp). The QOP method agreed better with the SPECT/CT-based estimation (limits of agreement: 2.07 pp; bias: 0.52 pp). This observation was consistent with the digital phantom experiments. We have proposed and evaluated a novel method called QOP for LSF estimation that performs almost as accurate as SPECT/CT, but without the need for lung mass extrapolation, long scan duration, or extensive manual segmentation, making it as fast as current PS-GM

    Performance evaluation of the ECAT HRRT: An LSO-LYSO double layer high resolution, high sensitivity scanner

    No full text
    The ECAT high resolution research tomograph (HRRT) is a dedicated brain and small animal PET scanner, with design features that enable high image spatial resolution combined with high sensitivity. The HRRT is the first commercially available scanner that utilizes a double layer of LSO/LYSO crystals to achieve photon detection with depth-of-interaction information. In this study, the performance of the commercial LSO/LYSO HRRT was characterized, using the NEMA protocol as a guideline. Besides measurement of spatial resolution, energy resolution, sensitivity, scatter fraction, count rate performance, correction for attenuation and scatter, hot spot recovery and image quality, a clinical evaluation was performed by means of a HR+/HRRT human brain comparison study. Point source resolution varied across the field of view from approximately 2.3 to 3.2 mm (FWHM) in the transaxial direction and from 2.5 to 3.4 mm in the axial direction. Absolute line-source sensitivity ranged from 2.5 to 3.3% and the NEMA-2001 scatter fraction equalled 45%. Maximum NECR was 45 kcps and 148 kcps according to the NEMA-2001 and 1994 protocols, respectively. Attenuation and scatter correction led to a volume uniformity of 6.3% and a system uniformity of 3.1%. Reconstructed values deviated up to 15 and 8% in regions with high and low densities, respectively, which can possibly be assigned to inaccuracies in scatter estimation. Hot spot recovery ranged from 60 to 94% for spheres with diameters of 1 to 2.2 cm. A high quantitative agreement was met between HR+ and HRRT clinical data. In conclusion, the ECAT HRRT has excellent resolution and sensitivity properties, which is a crucial advantage in many research studies

    A Change of Heart : Yield of Cardiac Imaging in Acute Stroke Workup

    No full text
    This case report describes a patient who experienced a recurrent ischemic stroke within 24 h. Dual-energy computed tomography (DECT) angiography on admission showed 2 intracardiac thrombi, 1 in the left ventricle and 1 in the left atrial appendage. Following the second ischemic event, repeated DECT angiography showed that the ventricular thrombus had considerably diminished, suggesting that the recurrent brain infarction was caused by cardioembolism. This case emphasizes (1) the potential benefit of cardiac evaluation through CT angiography in the acute stroke setting, and (2) the use of DECT angiography for the detection of thrombus and the differentiation between thrombus, the myocardial wall, and a slow flow of contrast

    Respiratory motion compensation in interventional liver SPECT using simultaneous fluoroscopic and nuclear imaging

    No full text
    Purpose: Quantitative accuracy of the single photon emission computed tomography (SPECT) reconstruction of the pretreatment procedure of liver radioembolization is crucial for dosimetry; visual quality is important for detecting doses deposited outside the planned treatment volume. Quantitative accuracy is limited by respiratory motion. Conventional gating eliminates motion by count rejection but increases noise, which degrades the visual reconstruction quality. Motion compensation using all counts can be performed if the motion signal and motion vector field over time are known. The measurement of the motion signal of a patient currently requires a device (such as a respiratory belt) attached to the patient, which complicates the acquisition. The motion vector field is generally extracted from a previously acquired four-dimensional scan and can differ from the motion in the scan performed during the intervention. The simultaneous acquisition of fluoroscopic and nuclear projections can be used to obtain both the motion vector field and the projections of the corresponding (moving) activity distribution. This eliminates the need for devices attached to the patient and provides an accurate motion vector field for SPECT reconstruction. Our approach to motion compensation would primarily be beneficial for interventional SPECT because the time-critical setting requires fast scans and no inconvenience of an external apparatus. The purpose of this work is to evaluate the performance of the motion compensation approach for interventional liver SPECT by means of simulations. Methods: Nuclear and fluoroscopic projections of a realistic digital human phantom with respiratory motion were generated using fast Monte Carlo simulators. Fluoroscopic projections were sampled at 1–5 Hz. Nuclear data were acquired continuously in list mode. The motion signal was extracted from the fluoroscopic projections by calculating the center-of-mass, which was then used to assign each photon to a corresponding motion bin. The fluoroscopic projections were reconstructed per bin and coregistered, resulting in a motion vector field that was used in the SPECT reconstruction. The influence of breathing patterns, fluoroscopic imaging dose, sampling rate, number of bins, and scanning time was studied. In addition, the motion compensation method was compared with conventional gating to evaluate the detectability of spheres with varying uptake ratios. Results: The liver motion signal was accurately extracted from the fluoroscopic projections, provided the motion was stable in amplitude and the sampling rate was greater than 2 Hz. The minimum total fluoroscopic dose for the proposed method to function in a 5-min scan was 10 µGy. Although conventional gating improved the quantitative reconstruction accuracy, substantial background noise was observed in the short scans because of the limited counts available. The proposed method similarly improved the quantitative accuracy, but generated reconstructions with higher visual quality. The proposed method provided better visualization of low-contrast features than when using gating. Conclusion: The proposed motion compensation method has the potential to improve SPECT reconstruction quality. The method eliminates the need for external devices to measure the motion signal and generates an accurate motion vector field for reconstruction. A minimal increase in the fluoroscopic dose is required to substantially improve the results, paving the way for clinical use

    Respiratory motion compensation in interventional liver SPECT using simultaneous fluoroscopic and nuclear imaging

    No full text
    Purpose: Quantitative accuracy of the single photon emission computed tomography (SPECT) reconstruction of the pretreatment procedure of liver radioembolization is crucial for dosimetry; visual quality is important for detecting doses deposited outside the planned treatment volume. Quantitative accuracy is limited by respiratory motion. Conventional gating eliminates motion by count rejection but increases noise, which degrades the visual reconstruction quality. Motion compensation using all counts can be performed if the motion signal and motion vector field over time are known. The measurement of the motion signal of a patient currently requires a device (such as a respiratory belt) attached to the patient, which complicates the acquisition. The motion vector field is generally extracted from a previously acquired four-dimensional scan and can differ from the motion in the scan performed during the intervention. The simultaneous acquisition of fluoroscopic and nuclear projections can be used to obtain both the motion vector field and the projections of the corresponding (moving) activity distribution. This eliminates the need for devices attached to the patient and provides an accurate motion vector field for SPECT reconstruction. Our approach to motion compensation would primarily be beneficial for interventional SPECT because the time-critical setting requires fast scans and no inconvenience of an external apparatus. The purpose of this work is to evaluate the performance of the motion compensation approach for interventional liver SPECT by means of simulations. Methods: Nuclear and fluoroscopic projections of a realistic digital human phantom with respiratory motion were generated using fast Monte Carlo simulators. Fluoroscopic projections were sampled at 1–5 Hz. Nuclear data were acquired continuously in list mode. The motion signal was extracted from the fluoroscopic projections by calculating the center-of-mass, which was then used to assign each photon to a corresponding motion bin. The fluoroscopic projections were reconstructed per bin and coregistered, resulting in a motion vector field that was used in the SPECT reconstruction. The influence of breathing patterns, fluoroscopic imaging dose, sampling rate, number of bins, and scanning time was studied. In addition, the motion compensation method was compared with conventional gating to evaluate the detectability of spheres with varying uptake ratios. Results: The liver motion signal was accurately extracted from the fluoroscopic projections, provided the motion was stable in amplitude and the sampling rate was greater than 2 Hz. The minimum total fluoroscopic dose for the proposed method to function in a 5-min scan was 10 µGy. Although conventional gating improved the quantitative reconstruction accuracy, substantial background noise was observed in the short scans because of the limited counts available. The proposed method similarly improved the quantitative accuracy, but generated reconstructions with higher visual quality. The proposed method provided better visualization of low-contrast features than when using gating. Conclusion: The proposed motion compensation method has the potential to improve SPECT reconstruction quality. The method eliminates the need for external devices to measure the motion signal and generates an accurate motion vector field for reconstruction. A minimal increase in the fluoroscopic dose is required to substantially improve the results, paving the way for clinical use
    corecore