6 research outputs found

    Revealing charge-tunneling processes between a quantum dot and a superconducting island through gate sensing

    Full text link
    We report direct detection of charge-tunneling between a quantum dot and a superconducting island through radio-frequency gate sensing. We are able to resolve spin-dependent quasiparticle tunneling as well as two-particle tunneling involving Cooper pairs. The quantum dot can act as an RF-only sensor to characterize the superconductor addition spectrum, enabling us to access subgap states without transport. Our results provide guidance for future dispersive parity measurements of Majorana modes, which can be realized by detecting the parity-dependent tunneling between dots and islands.Comment: 6 pages, 4 figures, supplemental material included as ancillary fil

    Controllable Single Cooper Pair Splitting in Hybrid Quantum Dot Systems

    Full text link
    Cooper pair splitters hold utility as a platform for investigating the entanglement of electrons in Cooper pairs, but probing splitters with voltage-biased Ohmic contacts prevents the retention of electrons from split pairs since they can escape to the drain reservoirs. We report the ability to controllably split and retain single Cooper pairs in a multi-quantum-dot device isolated from lead reservoirs, and separately demonstrate a technique for detecting the electrons emerging from a split pair. First, we identify a coherent Cooper pair splitting charge transition using dispersive gate sensing at GHz frequencies. Second, we utilize a double quantum dot as an electron parity sensor to detect parity changes resulting from electrons emerging from a superconducting island.Comment: 18 pages, 12 figures. D.J. and C.G.P. contributed equally to this wor

    Rapid Detection of Coherent Tunneling in an InAs Nanowire Quantum Dot through Dispersive Gate Sensing

    Get PDF
    Dispersive sensing is a powerful technique that enables scalable and high-fidelity readout of solid-state quantum bits. In particular, gate-based dispersive sensing has been proposed as the readout mechanism for future topological qubits, which can be measured by single electrons tunneling through zero-energy modes. The development of such a readout requires resolving the coherent charge tunneling amplitude from a quantum dot in a Majorana-zero-mode host system faithfully on short time scales. Here, we demonstrate rapid single-shot detection of a coherent single-electron tunneling amplitude between InAs nanowire quantum dots. We have realized a sensitive dispersive detection circuit by connecting a sub-GHz, lumped element microwave resonator to a high-lever arm gate on one of dots. The resulting large dot-resonator coupling leads to an observed dispersive shift that is of the order of the resonator linewidth at charge degeneracy. This shift enables us to differentiate between Coulomb blockade and resonance, corresponding to the scenarios expected for qubit state readout, with a signal to noise ratio exceeding 2 for an integration time of 1 microsecond. Our result paves the way for single shot measurements of fermion parity on microsecond timescales in topological qubits.Comment: 6 pages, 4 figure

    Radio-frequency C-V measurements with sub-attofarad sensitivity

    Full text link
    We demonstrate the use of radio-frequency (rf) resonators to measure the capacitance of nano-scale semiconducting devices in field-effect transistor configurations. The rf resonator is attached to the gate or the lead of the device. Consequently, tuning the carrier density in the conducting channel of the device affects the resonance frequency, quantitatively reflecting its capacitance. We test the measurement method on InSb and InAs nanowires at dilution-refrigerator temperatures. The measured capacitances are consistent with those inferred from the periodicity of the Coulomb blockade of quantum dots realized in the same devices. In an implementation of the resonator using an off-chip superconducting spiral inductor we find sensitivity values reaching down to 75~zF/\sqHz at 1~kHz measurement bandwidth, and noise down to 0.45~aF at 1~Hz bandwidth. We estimate the sensitivity of the method for a number of other implementations. In particular we predict typical sensitivity of about 40~zF/\sqHz at room temperature with a resonator comprised of off-the-shelf components. Of several proposed applications, we demonstrate two: the capacitance measurement of several identical 80~nm-wide gates with a single resonator, and the field-effect mobility measurement of an individual nanowire with the gate capacitance measured in-situ

    Rapid Microwave-Only Characterization and Readout of Quantum Dots Using Multiplexed Gigahertz-Frequency Resonators

    No full text
    Superconducting resonators enable fast characterization and readout of mesoscopic quantum devices. Finding ways to perform measurements of interest on such devices using resonators only is therefore of great practical relevance. We report the experimental investigation of an InAs nanowire multi-quantum dot device by probing GHz resonators connected to the device. First, we demonstrate accurate extraction of the DC conductance from measurements of the high-frequency admittance. Because our technique does not rely on DC calibration, it could potentially obviate the need for DC measurements in semiconductor qubit devices. Second, we demonstrate multiplexed gate sensing and the detection of charge tunneling on microsecond time scales. The GHz detection of dispersive resonator shifts allows rapid acquisition of charge-stability diagrams, as well as resolving charge tunneling in the device with a signal-to-noise ratio of up to 15 in one microsecond. Our measurements show that GHz-frequency resonators may serve as a universal tool for fast tune-up and high-fidelity readout of semiconductor qubits
    corecore