5 research outputs found
Towards estimating land evaporation at field scales using GLEAM
The evaporation of water from land into the atmosphere is a key component of the hydrological cycle. Accurate estimates of this flux are essential for proper water management and irrigation scheduling. However, continuous and qualitative information on land evaporation is currently not available at the required spatio-temporal scales for agricultural applications and regional-scale water management. Here, we apply the Global Land Evaporation Amsterdam Model (GLEAM) at 100 m spatial resolution and daily time steps to provide estimates of land evaporation over The Netherlands, Flanders, and western Germany for the period 2013-2017. By making extensive use of microwave-based geophysical observations, we are able to provide data under all weather conditions. The soil moisture estimates from GLEAM at high resolution compare well with in situ measurements of surface soil moisture, resulting in a median temporal correlation coefficient of 0.76 across 29 sites. Estimates of terrestrial evaporation are also evaluated using in situ eddy-covariance measurements from five sites, and compared to estimates from the coarse-scale GLEAM v3.2b, land evaporation from the Satellite Application Facility on Land Surface Analysis (LSA-SAF), and reference grass evaporation based on Makkink's equation. All datasets compare similarly with in situ measurements and differences in the temporal statistics are small, with correlation coefficients against in situ data ranging from 0.65 to 0.95, depending on the site. Evaporation estimates from GLEAM-HR are typically bounded by the high values of the Makkink evaporation and the low values from LSA-SAF. While GLEAM-HR and LSA-SAF show the highest spatial detail, their geographical patterns diverge strongly due to differences in model assumptions, model parameterizations, and forcing data. The separate consideration of rainfall interception loss by tall vegetation in GLEAM-HR is a key cause of this divergence: while LSA-SAF reports maximum annual evaporation volumes in the Green Heart of The Netherlands, an area dominated by shrubs and grasses, GLEAM-HR shows its maximum in the national parks of the Veluwe and Heuvelrug, both densely-forested regions where rainfall interception loss is a dominant process. The pioneering dataset presented here is unique in that it provides observational-based estimates at high resolution under all weather conditions, and represents a viable alternative to traditional visible and infrared models to retrieve evaporation at field scales
GLEAMÂ v3 : satellite-based land evaporation and root-zone soil moisture
The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from satellite data. Ever since its development in 2011, the model has been regularly revised, aiming at the optimal incorporation of new satellite-observed geophysical variables, and improving the representation of physical processes. In this study, the next version of this model (v3) is presented. Key changes relative to the previous version include (1) a revised formulation of the evaporative stress, (2) an optimized drainage algorithm, and (3) a new soil moisture data assimilation system. GLEAM v3 is used to produce three new data sets of terrestrial evaporation and root-zone soil moisture, including a 36-year data set spanning 1980-2015, referred to as v3a (based on satellite-observed soil moisture, vegetation optical depth and snow-water equivalent, reanalysis air temperature and radiation, and a multi-source precipitation product), and two satellite-based data sets. The latter share most of their forcing, except for the vegetation optical depth and soil moisture, which are based on observations from different passive and active C-and L-band microwave sensors (European Space Agency Climate Change Initiative, ESA CCI) for the v3b data set (spanning 2003-2015) and observations from the Soil Moisture and Ocean Salinity (SMOS) satellite in the v3c data set (spanning 2011-2015). Here, these three data sets are described in detail, compared against analogous data sets generated using the previous version of GLEAM (v2), and validated against measurements from 91 eddy-covariance towers and 2325 soil moisture sensors across a broad range of ecosystems. Results indicate that the quality of the v3 soil moisture is consistently better than the one from v2: average correlations against in situ surface soil moisture measurements increase from 0.61 to 0.64 in the case of the v3a data set and the representation of soil moisture in the second layer improves as well, with correlations increasing from 0.47 to 0.53. Similar improvements are observed for the v3b and c data sets. Despite regional differences, the quality of the evaporation fluxes remains overall similar to the one obtained using the previous version of GLEAM, with average correlations against eddy-covariance measurements ranging between 0.78 and 0.81 for the different data sets. These global data sets of terrestrial evaporation and root-zone soil moisture are now openly available at www.GLEAM.eu and may be used for large-scale hydrological applications, climate studies, or research on land-atmosphere feedbacks
Afternoon rain more likely over drier soils
Land surface properties, such as vegetation cover and soil moisture, influence the partitioning of radiative energy between latent and sensible heat fluxes in daytime hours. During dry periods, a soil-water deficit can limit evapotranspiration, leading to increased surface heating ofwarmer and drier conditions in the lower atmosphere and affecting the climate. Soil moisture can influence the development of convective storms through such modifications of low-level atmospheric temperature and humidity, which in turn feeds back on soil moisture. Yet there is considerable uncertainty in how soil moisture affects convective storms across the world, owing to a lack of observational evidence and uncertainty in large-scale models. Here we present a global-scale observational analysis of the coupling between soil moisture and precipitation. We show that across all six continents studied, afternoon rain falls preferentially over soils that are relatively dry compared to the surrounding area. The signal emerges most clearly in the observations over semi-arid regions, where surface fluxes are sensitive to soil moisture, and convective events are frequent. Mechanistically, our results are consistent with enhanced afternoon moist convection driven by increased sensible heat flux over drier soils, and/or mesoscale variability in soil moisture. We find no evidence in our analysis of a positive feedbackâthat is, a preference for rain over wetter soilsâat the spatial scale (50â100 kilometres) studied. In contrast, we find that a positive feedback of soil moisture on simulated precipitation does dominate in six state-of-the-art global weather and climate modelsâa difference that may contribute to excessive simulated droughts in large-scale models
A recent decline in the global land evaportranspiration trend due to limited moisture supply
LetterInternational audienceMore than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land--a key diagnostic criterion of the effects of climate change and variability-remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1â±â1.0âmillimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system scienc
Introduction STATE OF THE CLIMATE IN 2022
Abstract
âJ. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earthâs global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the âtriple dipâ La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earthâs major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australiaâs annual temperature was slightly below the 1991â2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear iceâice that survives at least one summer melt seasonâremaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991â2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of â9.4°Câ44°C above the March averageâon 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the worldâs oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealandâs longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991â2020 average of 87. There were three Category 5 tropical cyclones across the globeâtwo in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canadaâs history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in RĂ©union. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the worldâs costliest natural disasters of all time. Near Rio de Janeiro, Brazil, PetrĂłpolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14â15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitudeâfar exceeding any previous values in the 17-year satellite recordâand altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or âŒ10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.</jats:p