8,842 research outputs found
Friction Drag on a Particle Moving in a Nematic Liquid Crystal
The flow of a liquid crystal around a particle does not only depend on its
shape and the viscosity coefficients but also on the direction of the
molecules. We studied the resulting drag force on a sphere moving in a nematic
liquid crystal (MBBA) in a low Reynold's number approach for a fixed director
field (low Ericksen number regime) using the computational artificial
compressibility method. Taking the necessary disclination loop around the
sphere into account, the value of the drag force anisotropy
(F_\perp/F_\parallel=1.50) for an exactly computed field is in good agreement
with experiments (~1.5) done by conductivity diffusion measurements. We also
present data for weak anchoring of the molecules on the particle surface and of
trial fields, which show to be sufficiently good for most applications.
Furthermore, the behaviour of the friction close to the transition point
nematic isotropic and for a rod-like and a disc-like liquid crystal will be
given.Comment: 23 pages RevTeX, including 3 PS figures, 1 PS table and 1 PS-LaTeX
figure; Accepted for publication in Phys. Rev.
Hardy's inequality for functions vanishing on a part of the boundary
We develop a geometric framework for Hardy's inequality on a bounded domain
when the functions do vanish only on a closed portion of the boundary.Comment: 26 pages, 2 figures, includes several improvements in Sections 6-8
allowing to relax the assumptions in the main results. Final version
published at http://link.springer.com/article/10.1007%2Fs11118-015-9463-
Debris disks around Sun-like stars
We have observed nearly 200 FGK stars at 24 and 70 microns with the Spitzer
Space Telescope. We identify excess infrared emission, including a number of
cases where the observed flux is more than 10 times brighter than the predicted
photospheric flux, and interpret these signatures as evidence of debris disks
in those systems. We combine this sample of FGK stars with similar published
results to produce a sample of more than 350 main sequence AFGKM stars. The
incidence of debris disks is 4.2% (+2.0/-1.1) at 24 microns for a sample of 213
Sun-like (FG) stars and 16.4% (+2.8/-2.9) at 70 microns for 225 Sun-like (FG)
stars. We find that the excess rates for A, F, G, and K stars are statistically
indistinguishable, but with a suggestion of decreasing excess rate toward the
later spectral types; this may be an age effect. The lack of strong trend among
FGK stars of comparable ages is surprising, given the factor of 50 change in
stellar luminosity across this spectral range. We also find that the incidence
of debris disks declines very slowly beyond ages of 1 billion years.Comment: ApJ, in pres
Aperiodic dynamical decoupling sequences in presence of pulse errors
Dynamical decoupling (DD) is a promising tool for preserving the quantum
states of qubits. However, small imperfections in the control pulses can
seriously affect the fidelity of decoupling, and qualitatively change the
evolution of the controlled system at long times. Using both analytical and
numerical tools, we theoretically investigate the effect of the pulse errors
accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G.
S. Uhrig, Phys. Rev. Lett. {\bf 98}, 100504 (2007)], and the Quadratic DD (QDD)
protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\bf 104},
130501 (2010)]. We consider the implementation of these sequences using the
electron spins of phosphorus donors in silicon, where DD sequences are applied
to suppress dephasing of the donor spins. The dependence of the decoupling
fidelity on different initial states of the spins is the focus of our study. We
investigate in detail the initial drop in the DD fidelity, and its long-term
saturation. We also demonstrate that by applying the control pulses along
different directions, the performance of QDD protocols can be noticeably
improved, and explain the reason of such an improvement. Our results can be
useful for future implementations of the aperiodic decoupling protocols, and
for better understanding of the impact of errors on quantum control of spins.Comment: updated reference
On the problem of interactions in quantum theory
The structure of representations describing systems of free particles in the
theory with the invariance group SO(1,4) is investigated. The property of the
particles to be free means as usual that the representation describing a
many-particle system is the tensor product of the corresponding single-particle
representations (i.e. no interaction is introduced). It is shown that the mass
operator contains only continuous spectrum in the interval
and such representations are unitarily equivalent to ones describing
interactions (gravitational, electromagnetic etc.). This means that there are
no bound states in the theory and the Hilbert space of the many-particle system
contains a subspace of states with the following property: the action of free
representation operators on these states is manifested in the form of different
interactions. Possible consequences of the results are discussed.Comment: 35 pages, Late
Dynamical tunneling in molecules: Quantum routes to energy flow
Dynamical tunneling, introduced in the molecular context, is more than two
decades old and refers to phenomena that are classically forbidden but allowed
by quantum mechanics. On the other hand the phenomenon of intramolecular
vibrational energy redistribution (IVR) has occupied a central place in the
field of chemical physics for a much longer period of time. Although the two
phenomena seem to be unrelated several studies indicate that dynamical
tunneling, in terms of its mechanism and timescales, can have important
implications for IVR. Examples include the observation of local mode doublets,
clustering of rotational energy levels, and extremely narrow vibrational
features in high resolution molecular spectra. Both the phenomena are strongly
influenced by the nature of the underlying classical phase space. This work
reviews the current state of understanding of dynamical tunneling from the
phase space perspective and the consequences for intramolecular vibrational
energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem.
(Review to appear in Oct. 2007
Mean-field phase diagram of disordered bosons in a lattice at non-zero temperature
Bosons in a periodic lattice with on-site disorder at low but non-zero
temperature are considered within a mean-field theory. The criteria used for
the definition of the superfluid, Mott insulator and Bose glass are analysed.
Since the compressibility does never vanish at non-zero temperature, it can not
be used as a general criterium. We show that the phases are unambiguously
distinguished by the superfluid density and the density of states of the
low-energy exitations. The phase diagram of the system is calculated. It is
shown that even a tiny temperature leads to a significant shift of the boundary
between the Bose glass and superfluid
Surfactant secretion in LRRK2 knock-out rats : changes in lamellar body morphology and rate of exocytosis
Leucine-rich repeat kinase 2 (LRRK2) is known to play a role in the pathogenesis of various diseases including Parkinson disease, morbus Crohn, leprosy and cancer. LRRK2 is suggested to be involved in a number of cell biological processes such as vesicular trafficking, transcription, autophagy and lysosomal pathways. Recent histological studies of lungs of LRRK2 knock-out (LRRK2 -/-) mice revealed significantly enlarged lamellar bodies (LBs) in alveolar type II (ATII) epithelial cells. LBs are large, lysosome-related storage organelles for pulmonary surfactant, which is released into the alveolar lumen upon LB exocytosis. In this study we used high-resolution, subcellular live-cell imaging assays to investigate whether similar morphological changes can be observed in primary ATII cells from LRRK2 -/- rats and whether such changes result in altered LB exocytosis. Similarly to the report in mice, ATII cells from LRRK2 -/- rats contained significantly enlarged LBs resulting in a >50% increase in LB volume. Stimulation of ATII cells with ATP elicited LB exocytosis in a significantly increased proportion of cells from LRRK2 -/- animals. LRRK2 -/- cells also displayed increased intracellular Ca2+ release upon ATP treatment and significant triggering of LB exocytosis. These findings are in line with the strong Ca2+-dependence of LB fusion activity and suggest that LRRK2 -/- affects exocytic response in ATII cells via modulating intracellular Ca2+ signaling. Post-fusion regulation of surfactant secretion was unaltered. Actin coating of fused vesicles and subsequent vesicle compression to promote surfactant expulsion were comparable in cells from LRRK2 -/- and wt animals. Surprisingly, surfactant (phospholipid) release from LRRK2 -/- cells was reduced following stimulation of LB exocytosis possibly due to impaired LB maturation and surfactant loading of LBs. In summary our results suggest that LRRK2 -/- affects LB size, modulates intracellular Ca2+ signaling and promotes LB exocytosis upon stimulation of ATII cells with ATP
The ArDM experiment
The aim of the ArDM project is the development and operation of a one ton
double-phase liquid argon detector for direct Dark Matter searches. The
detector measures both the scintillation light and the ionization charge from
ionizing radiation using two independent readout systems. This paper briefly
describes the detector concept and presents preliminary results from the ArDM
R&D program, including a 3 l prototype developed to test the charge readout
system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta
Physica Polonica
- …