93 research outputs found
The association between dietary and skin advanced glycation end products: the Rotterdam Study
BackgroundAdvanced glycation end products (AGEs) accumulate in tissues with age and in conditions such as diabetes mellitus and chronic kidney disease (CKD), and they may be involved in age-related diseases. Skin AGEs measured as skin autofluorescence (SAF) are a noninvasive reflection of long-term AGE accumulation in tissues. Whether AGEs present in the diet (dAGEs) contribute to tissue AGEs is unclear.ObjectivesOur aim was to investigate the association between dietary and skin AGEs in the Rotterdam Study, a population-based cohort of mainly European ancestry.MethodsIn 2515 participants, intake of 3 dAGEs [carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL)] was estimated using FFQs and the content of AGEs measured in commonly consumed foods. SAF was measured 5 y (median value) later using an AGE Reader. The association of dAGEs with SAF was analyzed in linear regression models and stratified for diabetes and chronic kidney disease (CKD, defined as estimated glomerular filtration rate â€60 mL/min) status.ResultsMean ± SD intake was 3.40 ±0.89 mg/d for CML, 28.98 ±7.87 mg/d for MGH1, and 3.11 ±0.89 mg/d for CEL. None of them was associated with SAF in the total study population. However, in stratified analyses, CML was positively associated with SAF after excluding both individuals with diabetes and individuals with CKD: 1 SD higher daily CML intake was associated with a 0.03 (95% CI: 0.009, 0.05) arbitrary units higher SAF. MGH1 and CEL intake were not significantly associated with SAF. Nevertheless, the associations were stronger when the time difference between dAGEs and SAF measurements was shorter.ConclusionsHigher dietary CML intake was associated with higher SAF only among participants with neither diabetes nor CKD, which may be explained by high AGE formation in diabetes and decreased excretion in CKD or by dietary modifications in these disease groups. The dAGEâSAF associations were also modified by the time difference between measurements. Our results suggest that dAGEs can influence tissue AGE accumulation and possibly thereby age-related diseases. This trial was registered at the Netherlands National Trial Register as NTR6831 (http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6831) and at the WHO International Clinical Trials Registry Platform as NTR6831 (http://www.who.int/ictrp/network/primary/en/).<br/
Dietary fibre may mitigate sarcopenia risk:Findings from the NU-AGE cohort of older european adults
Sarcopenia is characterised by a progressive loss of skeletal muscle mass and physical function as well as related metabolic disturbances. While fibre-rich diets can influence metabolic health outcomes, the impact on skeletal muscle mass and function is yet to be determined, and the moderating effects by physical activity (PA) need to be considered. The aim of the present study was to examine links between fibre intake, skeletal muscle mass and physical function in a cohort of older adults from the NU-AGE study. In 981 older adults (71 ± 4 years, 58% female), physical function was assessed using the short-physical performance battery test and handgrip strength. Skeletal muscle mass index (SMI) was derived using dual-energy X-ray absorptiometry (DXA). Dietary fibre intake (FI) was assessed by 7-day food record and PA was objectively determined by accelerometery. General linear models accounting for covariates including PA level, protein intake and metabolic syndrome (MetS) were used. Women above the median FI had significantly higher SMI compared to those below, which remained in fully adjusted models (24.7 ± 0.2% vs. 24.2 ± 0.1%, p = 0.011, η2p = 0.012). In men, the same association was only evident in those without MetS (above median FI: 32.4 ± 0.3% vs. below median FI: 31.3 ± 0.3%, p = 0.005, η2p = 0.035). There was no significant impact of FI on physical function outcomes. The findings from this study suggest a beneficial impact of FI on skeletal muscle mass in older adults. Importantly, this impact is independent of adherence to guidelines for protein intake and PA, which further strengthens the potential role of dietary fibre in preventing sarcopenia. Further experimental work is warranted in order to elucidate the mechanisms underpinning the action of dietary fibre on the regulation of muscle mass
The Effect of Protein Supplementation versus Carbohydrate Supplementation on Muscle Damage Markers and Soreness Following a 15-km Road Race:A Double-Blind Randomized Controlled Trial
We assessed whether a protein supplementation protocol could attenuate running-induced muscle soreness and other muscle damage markers compared to iso-caloric placebo supplementation. A double-blind randomized controlled trial was performed among 323 recreational runners (age 44 ± 11 years, 56% men) participating in a 15-km road race. Participants received milk protein or carbohydrate supplementation, for three consecutive days post-race. Habitual protein intake was assessed using 24 h recalls. Race characteristics were determined and muscle soreness was assessed with the Brief Pain Inventory at baseline and 1â3 days post-race. In a subgroup (n = 149) muscle soreness was measured with a strain gauge algometer and creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations were measured. At baseline, no group-differences were observed for habitual protein intake (protein group: 79.9 ± 26.5 g/d versus placebo group: 82.0 ± 26.8 g/d, p = 0.49) and muscle soreness (protein: 0.45 ± 1.08 versus placebo: 0.44 ± 1.14, p = 0.96). Subjects completed the race with a running speed of 12 ± 2 km/h. With the Intention-to-Treat analysis no between-group differences were observed in reported muscle soreness. With the per-protocol analysis, however, the protein group reported higher muscle soreness 24 h post-race compared to the placebo group (2.96 ± 2.27 versus 2.46 ± 2.38, p = 0.039) and a lower pressure muscle pain threshold in the protein group compared to the placebo group (71.8 ± 30.0 N versus 83.9 ± 27.9 N, p = 0.019). No differences were found in concentrations of CK and LDH post-race between groups. Post-exercise protein supplementation is not more preferable than carbohydrate supplementation to reduce muscle soreness or other damage markers in recreational athletes with mostly a sufficient baseline protein intake running a 15-km road race. View Full-Tex
The muscle metabolome differs between healthy and frail older adults
Populations around the world are aging rapidly. Age-related loss of physiological functions negatively affects quality of life. A major contributor to the frailty syndrome of aging is loss of skeletal muscle. In this study we assessed the skeletal muscle biopsy metabolome of healthy young, healthy older and frail older subjects to determine the effect of age and frailty on the metabolic signature of skeletal muscle tissue. In addition, the effects of prolonged whole-body resistance-type exercise training on the muscle metabolome of older subjects were examined. The baseline metabolome was measured in muscle biopsies collected from 30 young, 66 healthy older subjects and 43 frail older subjects. Follow-up samples from frail older (24 samples) and healthy older subjects (38 samples) were collected after 6 months of prolonged resistance-type exercise training. Young subjects were included as a reference If thisgroup. Primary differences in skeletal muscle metabolite levels between young and healthy older subjects were related to mitochondrial function, muscle fiber type, and tissue turnover. Similar differences were observed when comparing frail older subjects with healthy older subjects at baseline. Prolonged resistance-type exercise training resulted in an adaptive response of amino acid metabolism, especially reflected in branched chain amino acids and genes related to tissue remodeling. The effect of exercise training on branched-chain amino acid-derived acylcarnitines in older subjects points to a downward shift in branched-chain amino acid catabolism upon training. We observed only modest correlations between muscle and plasma metabolite levels, which pleads against the use of plasma metabolites as a direct read-out of muscle metabolism and stresses the need for direct assessment of metabolites in muscle tissue biopsies
Changing from a Western to a Mediterranean-style diet does not affect iron or selenium status:Results of the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) 1-year randomized clinical trial in elderly Europeans
Background: Mediterranean diets limit red meat consumption and increase intakes of high-phytate foods, a combination that could reduce iron status. Conversely, higher intakes of fish, a good source of selenium, could increase selenium status. Objectives: A 1-y randomized controlled trial [New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE)] was carried out in older Europeans to investigate the effects of consuming a Mediterraneanstyle diet on indices of inflammation and changes in nutritional status. Methods: Selenium and iron intakes and status biomarkers were measured at baseline and after 1 y in 1294 people aged 65â79 y from 5 European countries (France, Italy, the Netherlands, Poland, and the United Kingdom) who had been randomly allocated either to a Mediterranean-style diet or to remain on their habitual, Western diet. Results: Estimated selenium intakes increased significantly with the intervention group (P < 0.01), but were not accompanied by changes in serum selenium concentrations. Iron intakes also increased (P < 0.001), but there was no change in iron status. However, when stratified by study center, there were positive effects of the intervention on iron status for serum ferritin for participants in Italy (P = 0.04) and France (P = 0.04) and on soluble transferrin receptor (sTfR) for participants in Poland (P < 0.01). Meat intake decreased and fish intake increased to a greater degree in the intervention group, relative to the controls (P < 0.01 for both), but the overall effects of the intervention on meat and fish intakes were mainly driven by data from Poland and France. Changes in serum selenium in the intervention group were associated with greater changes in serum ferritin (P = 0.01) and body iron (P = 0.01), but not sTfR (P = 0.73); there were no study center Ă selenium status interactions for the iron biomarkers. Conclusions: Consuming a Mediterranean-style diet for 1 y had no overall effect on iron or selenium status, although there were positive effects on biomarkers of iron status in some countries. The NU-AGE trial was registered at clinicaltrials.gov as NCT01754012. Am J Clin Nutr 2019;00:1â12
Mediterranean-style diet improves systolic blood pressure and arterial stiffness in older adults: Results of a 1-year European multi-center trial
We aimed to determine the effect of a Mediterranean-style diet, tailored to meet dietary recommendations for older adults, on blood pressure and arterial stiffness. In 12 months, randomized controlled trial (NU-AGE [New Dietary Strategies Addressing the Specific Needs of Elderly Population for Healthy Aging in Europe]), blood pressure was measured in 1294 healthy participants, aged 65 to 79 years, recruited from 5 European centers, and arterial stiffness in a subset of 225 participants. The intervention group received individually tailored standardized dietary advice and commercially available foods to increase adherence to a Mediterranean diet. The control group continued on their habitual diet and was provided with current national dietary guidance. In the 1142 participants who completed the trial (88.2%), after 1 year the intervention resulted in a significant reduction in systolic blood pressure (â5.5 mm Hg; 95% CI, â10.7 to â0.4; P=0.03), which was evident in males (â9.2 mm Hg, P=0.02) but not females (â3.1 mm Hg, P=0.37). The â1.7 mm Hg (95% CI, â4.3 to 0.9) decrease in diastolic pressure after intervention did not reach statistical significance. In a subset (n=225), augmentation index, a measure of arterial stiffness, was improved following intervention (â12.4; 95% CI, â24.4 to â0.5; P=0.04) with no change in pulse wave velocity. The intervention also resulted in an increase in 24-hour urinary potassium (8.8 mmol/L; 95% CI, 0.7â16.9; P=0.03) and in male participants (52%) a reduction in pulse pressure (â6.1 mm Hg; 95% CI, â12.0 to â0.2; P=0.04) and 24-hour urinary sodium (â27.1 mmol/L; 95% CI, â53.3 to â1.0; P=0.04). In conclusion, a Mediterranean-style diet is effective in improving cardiovascular health with clinically relevant reductions in blood pressure and arterial stiffness
Beneficial role of replacing dietary saturated fatty acids by polyunsaturated fatty acids in prevention of sarcopenia: Findings from the NU-AGE cohort:Findings from the nuâ age cohort
Dietary fat subtypes may play an important role in the regulation of muscle mass and function during ageing. The aim of the present study was to determine the impact of isocaloric macronutrient substitutions, including different fat subtypes, on sarcopenia risk in older men and women, while accounting for physical activity (PA) and metabolic risk. A total of 986 participants, aged 65â79 years, completed a 7âday food record and wore an accelerometer for a week. A continuous sexâspecific sarcopenia risk score (SRS), including skeletal muscle mass assessed by dualâenergy Xâray absorptiometry (DXA) and handgrip strength, was derived. The impact of the isocaloric replacement of saturated fatty acids (SFAs) by either monoâ (MUFAs) or polyâunsaturated (PUFAs) fatty acids on SRS was determined using regression analysis based on the whole sample and stratified by adherence to a recommended protein intake (1.1 g/BW). Isocaloric reduction of SFAs for the benefit of PUFAs was associated with a lower SRS in the whole population, and in those with a protein intake below 1.1 g/BW, after accounting for age, smoking habits, metabolic disturbances, and adherence to PA guidelines. The present study highlighted the potential of promoting healthy diets with optimised fat subtype distribution in the prevention of sarcopenia in older adults
Projected Prevalence of Inadequate Nutrient Intakes in Europe
Background: The purpose of this study was to analyze the prevalence of nutrient intake inadequacy in Europe, applying the Nordic Nutritional Recommendations in the context of the EURRECA Network of Excellence. Methods: Nutrient data was obtained from the European Nutrition and Health Report II. Those nutritional surveys using a validated food frequency questionnaire or diet history and a food diary/register with at least 7 days of registers or with an adjustment for intraindividual variability were included. The nutrients analyzed were: vitamin C, vitamin D, vitamin B-12, folic acid, calcium, iron, zinc, selenium, copper, and iodine. The estimated average requirement cut point was applied to estimate inadequacy. The Nordic and Institute of Medicine nutrient recommendations were used as references. Results: The mean prevalence of inadequacy was below 11% for zinc, iron, and vitamin B-12 (only in the elderly), and it was 11-20% for copper in adults and the elderly and for vitamin B-12 in adults and vitamin C in the elderly. The prevalence was above 20% for vitamin D, folic acid, calcium, selenium, and iodine in adults and the elderly and for vitamin C in adults. Conclusions: Vitamin C, vitamin D, folic acid, calcium, selenium, and iodine were the nutrients showing a higher prevalence of inadequate intakes in Europe. Copyright (C) 2011 S. Karger AG, Base
Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium
Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 Ă 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 Ă 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 Ă 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology
Nutritional Concerns Later in Life
In an ageing society, the preservation of health and function is becoming increasingly important. The present paper acknowledges that ageing is malleable and focuses on diets and key nutritional concerns later in life. It presents evidence for the importance of healthful dietary patterns and points towards specific nutritional concerns later in life and conveys three main messages: (1) considering health maintenance and malnutrition risk, both dietary quality in terms of healthful dietary patterns and dietary quantity are important later in life, (2) ageing-related changes in nutrient physiology and metabolism contribute to the risk of inadequacies or deficiencies for specific nutrients, e.g. vitamin D, vitamin B12 and protein and (3) that current food-based dietary guidelines propagate a shift into the direction of Mediterranean type of diets including more plant-based foods. Limited scientific evidence on nutritional requirements of older adults, along with envisaged shifts towards diets rich in plant foods, are challenges that need to be addressed in order to develop tailored nutritional recommendations and dietary guidance for older adults
- âŠ